
Computational Learning Theory
Lecture 5: Rademacher Complexity

Lecturer: James Worrell

In the previous lecture we introduced the Growth Function and VC dimension as measures of the
complexity of (possibly infinite) hypothesis sets. We will shortly give error bounds for learning based
on these measures. These results will be established as a consequence of error bounds that involve
yet another complexity measure—Rademacher complexity. The latter notion will come into its own
in our analysis of SVMs and Boosting. Significantly, unlike the Growth Function and VC dimension,
Rademacher complexity depends on the distribution over examples as well as the expressiveness of the
class of hypotheses.

1 Loss Functions

A natural approach to selecting a classifier is to choose one with the smallest empirical error on a given
sample. We can reformulate and generalise this idea in terms of loss functions.

Given a hypothesis h : X → Y , we define an associated 0-1 loss function g : X × Y → {0, 1} by

g(x, y) =

{
1 if h(x) 6= y
0 otherwise.

In other words, any labelled example for which the hypothesis does not predict the correct label incurs a
loss of one, while a correct prediction incurs no loss. In these terms the empirical error of a hypothesis
is the average of the associated loss function over the sample, while the true error of the hypothesis is
the expected value of the loss function with respect to the distribution over labelled examples.

It will be useful to consider more general loss functions than the family of 0-1 loss functions de-
scribed above. For example, consider a linear classifier h(~x) = sign(f(~x)) for some linear function
f(~x) = ~w · ~x+ b, where sign(u) = +1 if u ≥ 0 and −1 otherwise. The hinge loss function associated
to such a classifier is defined by

g(~x, y) = max(0, 1− yf(~x)) .

Here the loss depends on the magnitude of f(~x) as well as its sign, that is, we distinguish between
a near miss and a bad error. We also charge a loss for correctly classified examples with insufficient
margin, i.e., when 0 < yf(~x) < 1; see Figure 1.

There are several advantages to considering the hinge loss function instead of the 0-1-loss function.
In particular, finding a linear classifier with minimal 0-1 loss is NP-hard, whereas minimising the hinge
loss can be done efficiently using linear programming.
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Figure 1: loss functions

1



2 McDiarmid’s Inequality

The results of this lecture will use McDiarmid’s inequality, which is a concentration bound for inde-
pendent random variables.

Theorem 1 (McDiarmid’s Inequality). Let V be a set and f : V m → R a function such that for some
c > 0 and all x1, . . . , xm, x′i ∈ V ,

|f(x1, . . . , xi, . . . , xm)− f(x1, . . . , x
′
i, . . . , xm)| ≤ c .

Let X1, . . . , Xm be independent random variables taking values in V . Then for all ε > 0,

Pr (f(X1, . . . , Xm) ≥ E[f(X1, . . . , Xm)] + ε) ≤ e−2ε
2/mc2 .

We can recover Hoeffding’s inequality from McDiarmid’s Inequality by taking f to be the averaging
function: f(x1, . . . , xm) = 1

m

∑m
i=1 xi, with c = 1/m. More details about McDiarmid’s Inequality

can be found in [1].

3 Rademacher Complexity

LetG be a family of functions mapping a set Z into R. Given a probability distributionD over Z, write
L(g) for the expected loss Ez∼D[g(z)] of g ∈ G. Similarly, given a list S = (z1, . . . , zm) of elements
from Z, write LS(g) for the average loss 1

m

∑m
i=1 g(zi) of g ∈ G over S. In this section we prove a

result of the following form: if a sufficiently large sample is drawn from distribution D, then with high
probability L(g) and LS(g) are not too far apart for all functions g ∈ G.

In order to formulate such a result, we introduce a complexity measure for the class of functions
G. To this end, let σ = (σ1, . . . , σm) be a list of independent random variables, where, for each
i ∈ {1, . . . ,m}, σi takes value +1 with probability 1/2 and takes value −1 with probability 1/2. Then
the empirical Rademacher complexity of G with respect to S is defined to be

RS(G) = Eσ

[
sup
g∈G

1

m

m∑
i=1

σig(zi)
]
. (1)

For any integer m ≥ 1 the Rademacher complexity of G with respect to samples of size m drawn
according to D is

Rm(G) = E
S∼Dm

[RS(G)] .

Intuitively, the empirical Rademacher complexity RS(G) measures how well the class of functions
G correlates with randomly generated labels on the set S. The richer the class of functions G the better
the chance of finding g ∈ G that correlates with a given σ, and hence the larger RS(G).

The following result is a bound on the difference between the true loss and the empirical loss,
uniform over g ∈ G. Comparing with the error bound in Section 2.1 in Lecture 3, we see a similar

dependence on the sample sizem and the confidence δ. The essential difference is that the term
√

log |H|
m

is replaced by the Rademacher complexity Rm(G) below.

Theorem 2. Let G be a family of functions mapping a set Z to the unit interval [0, 1]. Suppose that a
sample S of size m is drawn according to distribution D on Z. Then for any δ > 0, with probability at
least 1− δ the following holds for all functions g ∈ G:

L(g) ≤ LS(g) + 2Rm(G) +O

√ log 1
δ

m

 . (2)
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Proof. We are interested in obtaining an upper bound for L(g)− LS(g), valid for all g ∈ G, that holds
with high probability with respect to the sample S. To this end, we consider the random variable

Φ(S) = sup
g∈G

(L(g)− LS(g)) .

Our strategy is to give an upper bound of the expected value ES [Φ(S)] and then to use a concentration
bound to argue that Φ(S) is close to ES [Φ(S)] with high probability.

Write S = {z1, . . . , zm} and consider Φ as a function of the independent random variables z1, . . . , zm.
Notice that Φ satisfies the hypothesis of McDiarmid’s inequality. Specifically, if we change the value
of the i-th argument from zi to z′i then the value of Φ changes by at most 1/m:

|Φ(z1, . . . , zi, . . . , zm)− Φ(z1, . . . , z
′
i, . . . , zm)| ≤ sup

g∈G

1

m

∣∣g(zi)− g(z′i)
∣∣

≤ 1

m
.

Applying McDiarmid’s inequality with c = 1/m we have that for any ε > 0,

Pr
(
Φ(S) ≥ ES [Φ(S)] + ε

)
≤ e−2mε2 .

Taking ε =

√
log 1/δ
2m we have that with probability at least 1− δ,

Φ(S) ≤ ES [Φ(S)] +

√
log 1/δ

2m
. (3)

Next we give an upper bound for ES [Φ(S)]. To this end, suppose that we draw a second sample
S′ = {z′1, . . . , z′m} according to distribution D. Then

ES [Φ(S)] = ES

[
sup
g∈G

(L(g)− LS(g))
]

= ES

[
sup
g∈G

ES′ [LS′(g)− LS(g)]
]

(4)

≤ ES,S′

[
sup
g∈G

(LS′(g)− LS(g))
]

(5)

= ES,S′

[
sup
g∈G

1

m

m∑
i=1

(g(z′i)− g(zi))
]

(6)

= ES,S′,σ

[
sup
g∈G

1

m

m∑
i=1

σi(g(z′i)− g(zi))
]

(7)

≤ ES′,σ

[
sup
g∈G

1

m

m∑
i=1

σig(z′i)
]

+ ES,σ

[
sup
g∈G

1

m

m∑
i=1

−σig(zi)
]

(8)

= 2Rm(G) . (9)

Line (4) follows from the easily established fact that L(g) = ES′ [LS′(g)]. Line (5) follows from the
fact that for any family {Xi : i ∈ I} of random variables on a finite probability space, supi∈I E[Xi] ≤
E[supi∈I Xi].

The magic is in Line (7), where we introduce the Rademacher random variables. Notice here that
setting σi = −1 has the same effect as swapping zi and z′i. To see why this step is okay, imagine
that after choosing S and S′ we update both sets by swapping zi and z′i with probability 1/2 for i =
1, . . . ,m. Now this swapping operation leaves the distribution over pairs of sets S and S′ unaffected:
each possible outcome of S and S′ has the same probability before and after the swapping procedure.
Thus the expected values in (6) and (7) are equal.
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Line (8) follows from the fact that supi∈I(ai+bi) ≤ supi∈I ai+supi∈I bi for real numbers {ai, bi :
i ∈ I}, while Line (9) follows from the fact that σi and −σi are identically distributed.

The above chain of inequalities shows that ES [Φ(S)] ≤ 2Rm(G). The statement of the theorem
follows from this and (3).

Next we give an error bound in terms of the empirical Rademacher complexity rather than the
expected Rademacher complexity.

Corollary 1. Suppose that a sample S of size m is drawn according to distribution D. Then for any
δ > 0, with probability at least 1− δ the following holds for all g ∈ G:

L(g) ≤ LS(g) + 2RS(G) +O

√ log 1
δ

m

 (10)

Proof. We may consider the empirical Rademacher complexity RS(G) := Eσ

[
supg∈G

1
m

∑m
i=1 zi

]
as

a function of the points z1, . . . , zm that comprise the sample S. Changing one of the zi to a new value z′i
changes RS(G) by at most 1/m. Applying McDiarmid’s inequality with c = 1/m and ε =

√
log 2/δ
2m ,

we have that with probability at least 1− δ/2

RS(G) ≤ Rm(G) +

√
log 2/δ

2m
(11)

By a union bound, with probability at least 1− 2δ the inequalities (2) and (11) both hold. But these
two inequalities together imply that (10) holds for all g ∈ G with probability at least 1− 2δ. Replacing
δ by δ/2 gives the required result.

References

[1] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Machine Learning. MIT Press,
2012.

4


