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Abstract. Nested (or non-uniform, or non-regular) datatypes have recursive definitions in which the type pa-
rameter changes. Their folds are restricted in power due to type constraints. Bird and Paterson introduced
generalised folds for extra power, but at the cost of a loss of efficiency: folds may take more than linear time to
evaluate. Hinze introduced efficient generalised folds to counter this inefficiency, but did so in a pragmatic way:
he did not provide categorical or equivalent underpinnings, so did not get the associated universal properties
for manipulating folds. We combine the efficiency of Hinze’s construction with the powerful reasoning tools of
Bird and Paterson’s.
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1. Introduction

The fold operator of functional programming can be defined on any regular datatype [BdM97], but there is a
problem when extending its definition to nested datatypes [BM98] because some of its parameters are required
to be polymorphic. A solution to this problem, proposed by Bird and Paterson [BP99b], was to introduce a new
kind of operator called a generalised fold. Like an ordinary fold, the generalised fold of a given initial algebra
is characterised uniquely by its defining equation, and this characterisation gives rise to useful fusion laws.
Unfortunately generalised folds still lack some of the other well-known properties of folds: they cannot be used
to define map functions, and the map fusion law is subject to a side condition. A more serious shortcoming,
observed by Hinze [Hin00], is that generalised folds are inefficient for some datatypes. So Hinze has introduced
a different kind of fold, called an efficient generalised fold, which suffers none of the problems described above.
It is specified as a generalised fold composed with a map, but the generalised fold is different from that defined
in [BP99b]. (The difference will be explained in Section 6.)

This paper is written in response to Hinze’s remark [Hin00] that he did not know whether the generalised
folds of [BP99b] also have an efficient counterpart. We show that they do, by giving a unique characterisation of
efficient folds in terms of initial algebras. This universal property provides a proof principle that can be used to
show that the efficient fold can be expressed as a Bird/Paterson generalised fold after a map, and consequently
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we obtain the fusion laws for free. It is not clear whether there is a similar universal construction of Hinze’s
folds.

We begin, in Section 2, by recalling some of the well-known properties of folds on regular datatypes, exem-
plified by the familiar datatype of lists. In Section 3, we discuss the relative merits of ordinary folds, generalised
folds and efficient folds on the nested datatype of perfectly balanced binary trees. The time complexity of the
latter two folds is then compared on a simple random access list [Oka98] in Section 4. Sections 5, 6 and 7 con-
tain a short description of the semantics of nested datatypes, generalised folds and efficient folds respectively.
Some applications of efficient folds are given in Section 8.

2. Fold on Regular Datatypes

We will use the datatype of lists to exhibit some of the intrinsic properties of folds on regular datatypes. The most
fundamental of these is the universal property of fold, from which the fold fusion law for program transformation
can be derived. In addition, the map function of any regular datatype can be expressed as a fold. As such, it can
be fused with any other fold, yielding a second law for program derivation, usually known as the map fusion
law.

The datatype of lists can be defined in the programming language Haskell [PJ03] by

data List a = Nil | Cons (a,List a)

and its fold operation can be defined recursively by

fold :: ∀a.∀b. b → ((a,b) → b) → List a → b
fold e f Nil = e
fold e f (Cons (x,xs)) = f (x, fold e f xs)

(For clarity, we will be explicit about all universal quantifications over types; Haskell 98 allows implicit outer-
most universal quantifications.) The universal property of fold states that, for finite lists, the function fold e f is
the unique solution of this pair of equations: if u : List a → b, e : b and f : (a,b) → b,

u = fold e f
⇔

u Nil = e and u (Cons (x,xs)) = f (x,u xs) for all x,xs
(1)

This property is a useful proof principle for program transformation since it captures the familiar pattern of
inductive proof for finite lists. In particular, it can be used to derive the following fusion law for lists, which
gives conditions under which the composition of an arbitrary function and a fold can be fused into a single fold:
if k : b → b′, e : b, f : (a,b) → b, e′ : b′ and f ′ : (a,b′) → b′, then

k e = e′ and k · f = f ′ · id× k
⇒

k · fold e f = fold e′ f ′
(2)

The map fusion law for lists can be derived from this law, together with the definition of the map function as a
fold. We will refer to the map function on lists as list for consistency with later examples. It can be expressed
as a fold in the following way:

list :: ∀a.∀b. (a → b) → List a → List b
list f = fold Nil (Cons · (f × id))

This definition might not be as readable as one written using explicit recursion, but it does have the advantage
that properties of list can be proved from more fundamental ones of fold. The map fusion law below is an
example of this. It would normally have been proved by induction, but is now almost immediate from the fold
fusion law (2): if e : b, and f : (a,b) → b, then for all k : a ′ → a,

fold e f · list k = fold e (f · (k× id)) (3)

This law does not hold for generalised folds, but it does hold for efficient folds, as we shall see in Sections 3
and 7.
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3. Folds on Nested Datatypes

Nested datatypes are recursively defined parameterised datatypes in which the parameter of the datatype changes
in the recursive call. For example, the Nest datatype, which is a level-wise representation of node-oriented,
perfectly balanced binary trees, can be defined in Haskell by

data Nest a = Nil | Cons (a,Nest (Pair a))
type Pair a = (a,a) (4)

This is a nested datatype because the Nest constructor is given the parameter a on the left hand side of this
equation and a different argument, Pair a, on the right. The example below shows how this datatype represents
perfectly balanced trees:

example :: Nest Int
example = Cons (1, Cons ((2,3), Cons (((4,5),(6,7)), Nil))) (5)

3.1. Ordinary Folds

One standard function that we might wish to apply to a nest of integers is the sum function, to sum the values
stored in it. The computation of the sum function is an instance of a more general pattern called a reduction.
Reductions can be defined on any regular datatype using folds alone, but this is not true of nested datatypes.
The initial algebra semantics of nested datatypes proposed in [BM98, MG01] gives the following definition of
fold on this datatype:

fold :: ∀n.∀b. (∀a. n a) → (∀a. (a,n (Pair a)) → n a) → Nest b → n b
fold e f Nil = e
fold e f (Cons (x,xs)) = f (x, fold e f xs)

where b and n range over types and type constructors (functors) respectively. The universal property associated
with this definition is identical to that for lists (1) apart from the type declarations. The problem with this
definition is that it is limited in the scope of its applicability, because the second parameter must be polymorphic.
So it can be used to implement some polymorphic reductions, like that of flattening a nest to a list, but not usually
for monomorphic reductions like sum. We can illustrate the difficulty in expressing sum as a fold on the above
example (5). The first parameter, e, must be zero, since it represents the sum of the empty nest. Writing the
second parameter f as an infix operator ⊕ and using the Haskell syntax of writing the prefix form of an infix
operator ⊕ in parentheses (⊕), we have

fold 0 (uncurry (⊕)) example = 1⊕ ((2,3)⊕ (((4,5),(6,7))⊕0))

The function (⊕) must have type ∀a.a → Int → Int for this fold to return an integer value, because it must be
applied to values of a different type at each recursive call. The naturality property associated with values of this
type in Haskell means that they must ignore the first parameter; therefore sum cannot be written as a fold.

3.2. Generalised Folds

Generalised folds provide a solution to the type problem encountered with ordinary folds, but their definitions
depend on those of the corresponding map functions. The map function for Nest is:

nest :: ∀a.∀b. (a → b) → Nest a → Nest b
nest f Nil = Nil
nest f (Cons (x,xs)) = Cons (f x,nest (pair f ) xs)

where the map for Pair is simply

pair :: ∀a.∀b. (a → b) → Pair a → Pair b
pair f (x,y) = (f x, f y)
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The generalised fold on nests is then defined below. It has one more parameter than the ordinary fold, and this
extra parameter is repeatedly mapped over the datatype at each recursive call; this is the cause of the inefficiency
observed in [Hin00] and reiterated here in Section 4.

gfold :: ∀n.∀m.∀b. (∀a. n a) → (∀a. (m a,n (Pair a)) → n a) → (∀a. Pair (m a) → m (Pair a))
→ Nest (m b) → n b

gfold e f g Nil = e
gfold e f g (Cons (x,xs)) = f (x,gfold e f g (nest g xs))

(6)

This definition is essentially the same as that in [Hin00], except that Hinze gives a more general type to the
second and third parameters:

gfold :: ∀n.∀m.∀p.∀b. (∀a. n a) → (∀a. (m a,n (p a)) → n a) → (∀a. Pair (m a) → m (p a))
→ Nest (m b) → n b

More substantial differences can be seen on other datatypes, as we will show in Section 6.2.
An ordinary fold is a special case of a generalised fold, obtained by setting function parameter g to the

identity function and type parameter m to the identity functor. The difference between the two folds is most
clearly shown by applying a generalised fold to the example nest of integers again. Writing the parameter g as
an infix operator ⊗, and using the Haskell function uncurry : (a → (b → c)) → ((a,b) → c) we have

gfold e (uncurry (⊕)) (uncurry (⊗)) example = 1⊕ ((2⊗3)⊕ (((4⊗5)⊗ (6⊗7))⊕ e)) (7)

It is now evident that any reduction on nests can be written as a generalised fold, by taking ⊗ to be ⊕. In
particular, the sum function can be written as:

sum = gfold 0 (uncurry (+)) (uncurry (+))

This function cannot be implemented in Haskell with the most general type signature for the generalised fold:
the type must be instantiated to different values for different applications. In this case we must use the type

gfold :: ∀a.∀b. b → ((a,b) → b) → (Pair a → a) → Nest a → b

This problem is due to weaknesses in Haskell’s type checker, which implements decidable type inference by
using a kinded first-order unification rather than full higher-order unification [Jon95], which is only semi-
decidable [Hue75]. This is one complication that is not removed by using efficient folds.

3.3. Fusion

We have now shown how two of the three problems with generalised folds that were listed in the introduction
manifest themselves on the datatype of nests: the generalised fold is defined in terms of the map function, rather
than vice versa, and the generalised fold can be inefficient because of the use of the map function in the recursive
call. The third problem concerned the map fusion law, which we will consider in this section: the law is subject
to a side condition. Before doing so, we will observe that the fold fusion law for generalised folds can be derived
from the universal property, just as it can for ordinary folds on regular datatypes.

Fold Fusion

The universal property of generalised folds on nests states that for all functors m and n, and all u : ∀a. Nest (m a)→
(n a), e : ∀a. n a, f : ∀a. (m a,n (Pair a)) → n a and g : ∀a. Pair (m a) → m (Pair a),

u = gfold e f g
⇔

u Nil = e and u (Cons (x,xs)) = f (x, u (nest g xs)) for all x,xs
(8)

A fusion law identical to that for lists (2) can be derived from this universal property alone, but a stronger law
is also derivable by observing that the naturality of u implies that for functors m and n and for all k ′ : a → b,

u ·nest (mk′) = (nk′) ·u (9)
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Combining (9) with the universal property (8) gives the following law: if e ′ : ∀a. n′ a, f ′ : ∀a. (m (m′ a),n′ (m′ (Pair a)))→
n′ (m′ a),k : ∀a. n a → n′ a, and k′ : ∀a. Pair (m′ a) → m′ (Pair a) then

k e = e′ and k · f = f ′ · (id× (k · (n · k′)))
⇒

k ·gfold e f g = gfold e′ f ′ (m k′ ·g)
(10)

The simpler law corresponding to (2) is recaptured by setting k ′ to the identity function and m ′ to the identity
functor.

Map Fusion

Recall that the map fusion law for lists (3) was derived from the fold fusion law together with the expression of
the map function as a fold. Clearly this is not possible for generalised folds, because their definition depends on
that of the map function; indeed it is not always the case that a generalised fold composed with a map can be
rewritten as another generalised fold, as the following example illustrates:

sumsquares = gfold 0 (uncurry (+)) (uncurry (+)) ·nest (λx. x∗ x)

There are cases where fusion is still possible though, such as the revels function below which reverses the order
of the labels in each level of a tree of pairs:

revels = gfold Nil Cons swap ·nest swap

where swap (x,y) = (y,x). This can be fused using the map fusion law for nests of [BP99b] which is eas-
ily derivable from (8) and gives the following sufficient condition for fusion: if k :: ∀a. m ′ a → m a and g′ ::
∀a. Pair (m′ a) → m′ (Pair a), then

g ·pair k = k ·g′
⇒

gfold e f g ·nest k = gfold e (f · (k× id)) g′
(11)

This condition is certainly not necessary for fusing a map with a generalised fold. For example, it applies to
neither of the following functions, yet both can be expressed as a single generalised fold:

flatten = gfold [ ] (uncurry (++)) (uncurry (++)) ·nest (λx. [x])

size = gfold 0 (uncurry (+)) (uncurry (+)) ·nest (λx. 1)

where ++ denotes list concatenation. We will see in Section 8 that fusion laws (10) and (11) can be combined
to give a single fold equivalence law that does apply to examples like flatten and size, but we have yet to derive
a generic version of the law.

3.4. Efficient Folds

Now we will introduce the efficient fold on nests, and see that it is not necessary to put any conditions on its
map fusion law. The definition is as follows:

efold :: ∀n.∀m.∀b. (∀a. n a) → (∀a. (m a,n (Pair a)) → n a) → (∀a. Pair (m a) → m (Pair a))
→ (∀l.∀z.(l b → m (z b)) → Nest (l b) → n (z b))

efold e f g h Nil = e
efold e f g h (Cons (x,xs)) = f (h x,efold e f g (g ·pair h) xs)

(12)

Notice that the types of the first three parameters are the same as in the corresponding generalised fold. Like
the generalised fold on nests, this definition differs from that of [Hin00] only in its type signature, which Hinze
declared as:

efold :: ∀n.∀m.∀p.∀b. (∀a. n a) → (∀a. (m a,n (p a)) → n a) → (∀a. Pair (m a) → m (p a))
→ (∀l.∀z.(l (m b) → m (z b)) → Nest (l (m b)) → n (z b))

Hinze pointed out that, at the time of writing his paper, efficient folds were not yet implementable in Haskell,
but the latest version of the Glasgow Haskell Compiler does accept definition (12) and its counterparts for other
nested datatypes.
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The efficient fold has a shorter definition than the corresponding generalised fold, since it does not require
the definition of the nest function. Indeed, nest can be implemented as an efficient fold: for all h : l a → m b,

nest h = efold Nil Cons id h (13)

Clearly the identity function is a special case of this. This definition of nest is not surprising when we consider
the action of the efficient fold on the previous example of a nest of integers:

efold e (uncurry (⊕)) (uncurry (⊗)) h example = h 1⊕ ((h 2⊗h 3)⊕ (((h 4⊗h 5)⊗ (h 6⊗h 7))⊕ e))

Comparing this with (7) suggests the following more general property of the efficient fold on nests: for all e, f ,
g and h of appropriate type,

efold e f g h = gfold e f g ·nest h (14)

A property similar to this was given as the specification of efficient folds in [Hin00]. Instead, we observe
that both (13) and (14) can be derived from the following universal property of efficient folds: for all type
constructors m and n, and all u : ∀a.∀l.∀z. (l a → m (z a)) → Nest (l a) → (n (z a)), e : ∀a. n a, f : ∀a. m a →
n (Pair a) → n a and g : ∀a. Pair (m a) → m (Pair a),

u = efold e f g
⇔

u h Nil = e and u h (Cons (x,xs)) = f (h x,u (g ·pair h) xs) for all x,xs, and all h : l a → m (z a).

This property is extended to an initial algebra definition of efficient folds on arbitrary nested datatypes in Sec-
tion 7, where it is proved that they can always be written as a generalised fold after a map. It follows that any
function that could be written as a generalised fold could also be written as an efficient fold. Moreover, it is now
clear from (14), together with the functorial property of nest, that in addition to fusion laws corresponding to
(10) and (11), efficient folds satisfy the following simple map fusion law: for all k :: ∀a. l ′ a → l a,

efold e f g h ·nest k = efold e f g (h · k) (15)

This law is similar to the map fusion law for ordinary folds, which suggests that the pattern of computation
captured by ordinary folds may be more closely mimicked by efficient folds than by generalised folds. Notice
however that the derivation of law (15) is quite different from its regular counterpart; in fact, neither (11) nor
(15) can be deduced solely from the universal property of efficient folds.

4. Efficiency

Efficient folds were described on the datatype of nests in Section 3 because it is one of the most simple non-
regular datatypes that can be defined. Unfortunately it is not a suitable datatype with which to demonstrate
how performance can be increased by using efficient folds, because they are not asymptotically faster than
generalised folds on nests. It was observed in [Hin00] that one datatype for which efficient folds do give a
worthwhile improvement is that of de Bruijn terms [BP99a]. In this section we will describe how a similar
benefit is gained on a datatype that is more closely related to nests: random access lists. Random access lists
were invented by Okasaki [Oka98] as a means of improving the efficiency of certain operations on traditional
lists.

The Haskell definition of a random access list given below contains the type constructors Nil and One
corresponding to Nil and Cons in the definition of Nest (4), together with an additional type constructor Zero.

data Ral a = Nil | Zero (Ral (Pair a)) | One (a,Ral (Pair a))

This datatype can represent collections of any size, unlike the Nest datatype which is restricted to representing
collections of size 2k − 1 for some k. A collection of data of size n is represented by a sequence of tuples
of sizes 2i for each i corresponding to a one in the binary representation of n. For example, the sequence
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ] has length 11, so it could be stored as:

One (0,One ((1,2),Zero (One ((((3,4),(5,6)),((7,8),(9,10))),Nil))))

Notice how the constructors One,One,Zero,One spell out the binary expansion of 11, least significant bit first.
Like binary numbers, random access lists can contain any number of trailing zeros. So, for example, in any such
data structure, the Nil may be replaced by Zeron Nil for any n without changing the collection represented, and
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in particular, the empty collection of values could be represented by Zero n Nil for any n. We will use this empty
collection to compare the relative efficiency of the generalised and efficient folds on this datatype. In order to
do so, we must first give their definitions, together with that of the map function. The types have been omitted
from the definitions below for conciseness, since it is the pattern of computation, rather than the type, that is
relevant to efficiency.

ral f Nil = Nil
ral f (Zero xs) = Zero (ral (pair f ) xs)
ral f (One (x,xs)) = One (f x,ral (pair f ) xs)

gfold e f g h Nil = e
gfold e f g h (Zero xs) = f (gfold e f g h (ral h xs))
gfold e f g h (One (x,xs)) = g (x,gfold e f g h (ral h xs))

efold e f g h k Nil = e
efold e f g h k (Zero xs) = f (efold e f g h (h ·pair k) xs)
efold e f g h k (One (x,xs)) = g (k x,efold e f g h (h ·pair k) xs)

At first sight, these definitions may seem rather daunting, because they have such a large number of parameters.
In this case, however, the following specialisations (in which f = id, so Zero constructors do not contribute
towards the result, and h = g, so the pairs in the ‘tail’ are collapsed using the same binary operator as combines
the head with the result of the recursive call) are often useful:

greduce e g = gfold e id g g
ereduce e g k = efold e id g g k

The sum function can be implemented by either of these, taking e, g and k to be 0, plus and id respectively,
where plus = uncurry (+), but the first program takes quadratic time whereas the second is linear. This can be
seen by first considering the evaluation of greduce 0 plus (Zero n Nil). At the ith step, the expression

(greduce 0 plus) · ral plus · ral (pair plus) · . . . · ral (pair i−1 plus) (Zeron−i Nil)

must be simplified to

(greduce 0 plus) ·Zero · ral (pair plus) · ral (pair2 plus) · . . . · ral (pairi plus) (Zeron−i−1 Nil)

in order for computation to proceed. Since this takes O(i) time, the total running time is O(n 2). Now consider
the evaluation of ereduce 0 plus id (Zeron Nil). At the ith step, the expression

ereduce 0 plus (plus ·pair (plus · (pair (. . .)))) (Zeron−i Nil)

must be simplified to

ereduce 0 plus (plus ·pair (plus ·pair (plus · (pair (. . .))))) (Zeron−i−1 Nil)

in order for computation to proceed. Since this takes constant time, the total running time is O(n).
It might be argued that this example is unconvincing, relying as it does on unnormalized random-access lists

(those with ‘trailing zeros’). On normalized random-access lists, the speedup is only from O(n logn) to O(n),
which is less dramatic but nevertheless an asymptotic speedup.

5. Semantics of Nested Datatypes

Having motivated the introduction of efficient generalised folds, we turn now to their formalisation. We base
our presentation on the semantics for nested datatypes presented in [MG01], which is restricted to one argu-
ment datatypes with no mutual recursion. (The generalisation to multiple arguments and mutual recursion is
straightforward.)

Suppose that C is a ω-cocomplete category with initial object and all finite products and coproducts, where
ω = {0 → 1 → 2 → 3 → . . .}. Then the class of nested datatypes considered here is the closure under initial
algebras of the class of higher-order functors or hofunctors defined below. Note that this class does not include
all Haskell datatypes, since the operators listed below are just the standard ones for constructing polynomial
datatypes [MA86] together with a horizontal composition operator. So, it does not include rose trees [Mee87]
for example. Let Coc(C) denote the category with objects all ω-cocontinuous endofunctors on C and arrows all
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natural transformations between them. The horizontal composition bifunctor � : Coc(C)×Coc(C) → Coc(C)
maps each pair of functors to its ordinary composite, and each pair of natural transformations θ :: P → Q and
ψ :: R → S to the horizontal composite θ� ψ :: P ·R → Q ·S defined by

θ� ψ = θS ·Pψ = Qψ ·θR

We will call a nested hofunctor Coc(C)→ Coc(C) any hofunctor which can be constructed from the identity ho-
functor and constant hofunctors, through the use of the horizontal composition, product or coproduct operators,
as listed below in decreasing order of precedence.

1. Id, the identity functor;

2. KQ, the constant functor for each object Q;

3. F
.
�G , the horizontal composition of F and G ;

4. F
..×G , the product of F and G ;

5. F
..
+G , the coproduct of F and G .

The last three operators are defined pointwise in terms of the corresponding bifunctors in Coc(C). Given any
bifunctor ⊕ : C×C → C, the bifunctor

.⊕ : Coc(C)×Coc(C) → Coc(C) is defined for all objects F,G and
arrows θ,ψ of Coc(C) by

(F
.⊕G) c = F c⊕G c

(F
.⊕G) f = F f ⊕G f

(θ
.⊕ψ) c = θ c⊕ψ c

for objects c and arrows f of C. We use the notation
..⊕ to denote operators that are lifted twice. In the sequel we

will use the fact that clause 3 above can be replaced by KQ
.
�G and Id

.
�G , since for all F , G and H ,

(F
..
+G )

.
�H = (F

.
�H )

..
+(G

.
�H )

(F
..×G )

.
�H = (F

.
�H )

..× (G
.
�H )

(F ·G ) ·H = F · (G ·H )

Note also that the grammar of hofunctors is not a free one as, for instance, (F
..
+G ) ·H = (F ·H )

..
+(G ·H ).

As an example, we return to the Nest datatype, which can be defined as the initial algebra of the hofunctor
N : Coc(C) → Coc(C) given by

N = KK1

..
+(KId

..× (Id
.
�KPair)) (16)

where the parentheses are redundant, thanks to the precedences chosen above. Since Nest is an initial algebra of
N , it satisfies N (Nest)∼= Nest, because the initial algebra of any functor is a fixed point of that functor. This
equation corresponds to the recursive definition of nests in Haskell (4).

6. Generalised Folds

The standard definition of the fold function (see eg [BdM97]) states that if C is a category and F : C → C is a
functor with least fixed point T, then there exists an initial F-algebra α : FT → T such that for all v : FN → N
there exists a unique arrow foldF v where

foldF v : T → N

is characterised by the universal property that for all u : T → N,

u = foldF v ⇔ u ·α = v ·F u

This definition was generalised in [BP99b] to the category Coc(C). We will use different notation but the
definition is essentially the same. For simplicity, we restrict attention to unary functors. We will denote an
empty collection of parameters by 〈〉, the single parameter r by 〈r〉, and if ū and w̄ represent the collections
u0,u1, ...,um and w0,w1, ...,wn respectively, then ū�w̄ is the collection u0,u1, ...,um,w0,w1, ...,wn. Now let F :



Disciplined, efficient, generalised folds for nested datatypes 9

Coc(C)→Coc(C) be a nested hofunctor with least fixed point T and initial algebra α : FT → T. The parameter
collection v̄F of F is defined inductively by

v̄KQ = 〈〉
v̄Id = 〈r〉
v̄F

..
+G = v̄F

�v̄G

v̄F
..×G = v̄F

�v̄G

v̄KQ
.
�G = 〈s〉�v̄G

v̄Id
.
�G = 〈t〉�v̄G

for some parameters r, s and t, whose types are determined below. Note that different instances of each of the
hofunctors Id, KQ

.
�G and Id

.
�G in F generate different instances of each of the parameters r, s and t. Now

let v̄ = 〈v〉�v̄F , for some further parameter v, then, given functors M and N, the generalised fold gfold v̄ has
type

gfoldF v̄ : T ·M → N

and is characterised uniquely, as proved in [BP99b], by the property that for all u : T ·M → N

u = gfoldF v̄ ⇔ u ·αM = v ·ΦF v̄F u (17)

where ΦF v̄F : (T · M → N) → FT · M → RF (M,N), v : RF (M,N) → N and RF is a hofunctor that is
independent of M and N. The value of RF (M,N) and the types of the parameters in v̄F are determined by the
following inductive definition.

(a) ΦKQ 〈〉 u = idQ·M
(b) ΦId 〈r〉 u = u ·T r r : M → M
(c) ΦF

..
+G (v̄F

�v̄G ) u = ΦF v̄F u+ ΦG v̄G u
(d) ΦF

..×G (v̄F
�v̄G ) u = ΦF v̄F u×ΦG v̄G u

(e) ΦKQ
.
�G (〈s〉�v̄G ) u = Q (s ·ΦG v̄G u) s ·ΦG v̄G u : G T ·M → M ·G N

(f) ΦId
.
�G (〈t〉�v̄G ) u = uG N ·T( t ·ΦG v̄G u) t ·ΦG v̄G u : G T ·M → M ·G N

where s = idM if G = KId.

6.1. Examples of generalised folds

First we will show how the generalised fold on the datatype Nest given in Section 3 can be derived from the
inductive definition above. Then we will give one more example: the generalised fold on the datatype Bush.
Two further examples are given in [BP99b].

6.1.1. Nest

The Nest datatype is an initial algebra of the hofunctor N defined in equation (16) by

N = KK1

..
+KId

..×Id
.
�KPair

So we can calculate that the parameter collection v̄N contains only one parameter t, and

ΦN 〈t〉 u
= definition of N

ΦKK1
..
+KId

..×Id
.
�KPair

〈t〉 u
= (a), (c) and (d)

ΦKK1
〈〉 u+ ΦKId 〈〉 u×ΦId

.
�KPair

〈t〉 u
= (a) and (f)

idK1 + idM ×uPair ·nest (t ·ΦKPair 〈〉 u) t : Pair ·M → M ·Pair
= (a)

idK1 + idM ×uPair ·nest t

We can deduce the type of parameter v of equation (17) from the type of Φ N 〈t〉 u:

v : 1+ M×N ·Pair → N
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If we write v as a coproduct [e, f ], take t = g and suppose that v̄ represents the parameters e, f and g, then

gfoldF v̄ ·α = [e, f ] · (idK1 + idM × (gfoldF v̄) ·nest g)

which corresponds to the Haskell definition of the generalised fold in equation (6) of Section 3.

6.1.2. Bush

The datatype Bush was introduced in [BM98]. Its definition is the following:

data Bush a = Nil | (Cons (a, Bush(Bush a))

This datatype is the initial algebra of the following hofunctor:

B = KK1

..
+KId

..×Id
.
�Id (18)

Therefore the map function for Bush is defined by:

bush :: ∀a.∀b. (a → b) → Bush a → Bush b
bush f Nil = Nil
bush f (Cons (x,xs)) = Cons (f x, bush(bush f ) xs)

and the parameter collection v̄B = 〈r, t〉 for some r and t. The calculation of ΦB 〈r, t〉 u is similar to that of
ΦN 〈t〉 u given above, so some of the steps are omitted:

ΦB 〈r, t〉 u
= (a), (c), (d) and (f)

idK1 + idM ×uN ·bush(t ·ΦId 〈r〉 u) t : N → M ·N
= (b)

idK1 + idM ×uN ·bush(t ·u ·bush r) r : M → M

So this time the final parameter v has type

v : 1+ M×N ·N → N

If we write v as a coproduct [e, f ], take t = g and r = h and suppose that v̄ represents the parameters e, f , g and
h, then we have

gfoldF v̄ ·α = [e, f ] · (idK1 + idM × (gfoldF v̄) ·bush(g · (gfoldF v̄) ·bush h))

which corresponds to the following Haskell definition:

gfold :: ∀n.∀m.∀b. (∀a. n a) → (∀a. (m a,n(n a)) → n a) → (∀a. n a → m(n a)) → (∀a. m a → m a)
→ Bush (m b) → n b

gfold e f g h Nil = e
gfold e f g h (Cons (x,xs)) = f (x,(gfold e f g h ·bush (g ·gfold e f g h ·bush h)) xs)

The ordinary fold on bushes is then a special case of this definition, when specialised to the appropriate type:

fold :: ∀a.∀b. a → ((a,a) → a) → (a → a) → (a → a) → Bush a → a
fold e f = gfold e f id id

Unlike the ordinary fold on nests, this fold can be used to sum a bush, but its restrictive type Bush a → a still
makes it rather inflexible.

6.2. Comparison with Hinze’s generalised fold

Before introducing our definition of an efficient fold, we pause to examine the difference between the gener-
alised folds of [BP99b] and [Hin00], since there are corresponding differences between the efficient folds.

The first difference is in the right hand side of clause (b) in the definition of Φ at the start of Section 6,
which would become simply u in Hinze’s definition. One result of this change is that Hinze’s generalised folds
coincide with ordinary folds on regular datatypes. Bird and Paterson made the observation that their definition
could have been changed in this way, but chose to keep the extra parameter for maximum generality. The initial
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algebra characterisation of both generalised folds and the corresponding efficient folds would still be valid if
this change were made.

There are more fundamental differences in clauses (e) and (f), and in the type signatures of the parameters.
These differences are perhaps best illustrated on the above examples. The difference for Nest is only in the type
signature, as we observed in Section 3, but we can see a much more marked difference by considering Hinze’s
definition for Bush:

gfoldB :: ∀n.∀m.∀b. (∀a. n a) → (∀a. (m a,n(n a)) → n a) → (∀a. m(n a))
→ (∀a. (m a,m (n(n a))) → m (n a)) → Bush (m b) → n b

gfoldB e f g h Nil = e
gfoldB e f g h (Cons (x,xs)) = f (x, (gfoldB e f g h ·bush (kfoldB g h )) xs)

kfoldB :: ∀n.∀m.∀b. (∀a. m(n a)) → (∀a. (m a,m (n(n a))) → m (n a)) → Bush (m b) → n b
kfoldB g h Nil = g
kfoldB g h (Cons (x,xs)) = h (x, (kfoldB g h ·bush (kfoldB g h )) xs)

Note that kfoldB has the same definition as an ordinary fold on Bush, but has a different type signature. This
definition is clearly very different from Bird and Paterson’s, as presented in Section 6.1.2.

7. An Efficient Fold

We will now give the definition of the efficient fold. The definition is given inductively, like that of the gener-
alised fold.

Let F : Coc(C) → Coc(C) be a nested hofunctor with least fixed point T and initial algebra α : FT → T,
and let v̄ = 〈v〉�v̄F for some v, where the parameter collection v̄F has the same definition as in Section 6.
Then, given functors M and N, the efficient fold efoldF v̄ has type

efoldF v̄ : (∀L,X. (L → M ·X) → T ·L → N ·X)

and is characterised uniquely (see Theorem 7.2 below) by the universal property that for all u : (∀L,X. (L →
M ·X) → T ·L → N ·X)

u = efoldF v̄ ⇔ (∀p : L → M ·X : u p ·αL = vX ·ΘF v̄F u p) (19)

where

ΘF v̄F : (∀L,X. (L → M ·X) → T ·L → N ·X) → (L′ → M ·X′) → FT ·L′ → RF (M,N) ·X′

and where v : RF (M,N) → N, and vX denotes v� idX. The types given to the parameters in v̄F in the following
definition of Θ are the same as for generalised folds, as is the resulting value of RF .

(a) ΘKQ 〈〉 u p = Q p
(b) ΘId 〈r〉 u p = u (rX′ ·p) r :: M → M
(c) ΘF

..
+G (v̄F

�v̄G ) u p = ΘF v̄F u p+ ΘG v̄G u p
(d) ΘF

..×G (v̄F
�v̄G ) u p = ΘF v̄F u p×ΘG v̄G u p

(e) ΘKQ
.
�G (〈s〉�v̄G ) u p = Q (sX′ ·ΘG v̄G u p) sX′ ·ΘG v̄G u p :: G T ·L′ → M ·G N ·X′

(f) ΘId
.
�G (〈t〉�v̄G ) u p = u (tX′ ·ΘG v̄G u p) tX′ ·ΘG v̄G u p :: G T ·L′ → M ·G N ·X′

where s = idM if G = KId. The relationship between Θ and its counterpart for generalised folds, Φ, is captured
by the following lemma which will be used later in the proof of Theorem 7.3:

Lemma 7.1. Let F : Coc(C) → Coc(C) be a nested hofunctor with least fixed point T, and let v̄ F be a pa-
rameter collection of appropriate type. Suppose that y = gfold F (〈v〉�v̄F ) for some v, and let u : (∀L,X. (L →
M ·X) → T ·L → N ·X) be defined by

u p = yX ·T p

then for all L, M and X, and all p : L → M ·X,

ΘF v̄F u p = (ΦF v̄F y)X ·F T p

The proof of this lemma is omitted, since it consists of routine case analysis on each of the clauses (a) to (f) in
the definitions of Φ and Θ.
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7.1. Examples of efficient folds

The parameter collections for both the following examples are the same as those given in Section 6.1 for the
corresponding generalised folds.

7.1.1. Nest

Using the definition of N in equation (16) we calculate:

ΘN 〈t〉 u p
= definition of N

ΘKK1
..
+KId

..×Id
.
�KPair

〈t〉 u p
= (a), (c) and (d)

ΘKK1
〈〉 u p+ ΘKId 〈〉 u p×ΘId

.
�KPair

〈t〉 u p
= (a)

idK1 + p×ΘId
.
�KPair

w̄ u p
= (a)

idK1 + p×u (tX′ ·ΘKPair〈〉 u p) tX′ ·ΘKPair〈〉 u p : Pair ·L → M ·Pair ·X
= (a)

idK1 + p×u (tX′ ·pair p) t : Pair ·M → M ·Pair

If v = [e, f ], t = g and p = h and if we suppose that v̄ represents the parameters e, f and g, then we have

efoldF v̄ h ·α = [e, f ] · (idK1 + h× (efoldF v̄ (g ·pair h)))

which corresponds to the Haskell definition of the efficient fold in equation 12 of Section 3.

7.1.2. Bush

We can use the definition of B in equation (18) to calculate

ΘB 〈r, t〉 u p
= (a), (c), (d) and (f)

idK1 + p×u (tX′ ·ΘId 〈r〉 u p) tX′ ·ΘId 〈r〉 u p : T ·L′ → M ·N ·X′
= (b)

1+ p×u (tX′ · (u (rX′ ·p))) r : M → M, t : N → M ·N
Taking v = [e, f ], t = g, r = h and p = k gives the definition:

efold :: ∀n.∀m.∀b.(∀a. n a) → (∀a. (m a,n (n a)) → n a) → (∀a. n a → m (n a)) → (∀a. m a → m a)
→ (l b → m (z b)) → Bush (l b) → n (z b)))

efold e f g h k Nil = e
efold e f g h k (Cons (x,xs)) = f (k x, efold e f g h (g · (efold e f g h (h · k))) xs)

Comparing this definition with the corresponding one for the generalised fold, we can easily establish the
familiar relationship that for all e : ∀a. n a, f : ∀a. (m a,n (n a)) → n a, g : ∀a. n a → m (n a), h : ∀a. m a → m a
and k : ∀a.l a → m (z a)

efold e f g h k = gfold e f g h ·bush k

This result is proved for arbitrary datatypes in Theorem 7.3 of the next section. The efficient fold of [Hin00] was
specified similarly as gfoldB e f g h ·bush k, where gfoldB was defined in Section 6.2. The differences between
the two generalised folds show that this would lead to a very different efficient fold.

7.2. Uniqueness of efficient folds

We will now show that efficient folds are characterised uniquely by their defining equations. The corresponding
property of generalised folds is deduced from a more general result in [BP99b], which is stated in Theorem 7.1
below. We will use the notation

A →C B
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to denote the (hom)set of all arrows from A to B in C. The theorem below uses the contravariant hom-functor,
which we will write as →C B for each object B in C. It sends each object A to the set A →C B and each arrow
g : A → A′ to the function λf .f ·g.

Theorem 7.1 ([BP99b]). Suppose that F :: C → C has initial algebra α : F T → T, and

Ψ :: ∀A. (P A →D B) → (P(F A) →D B)

is a natural transformation for some functor P : C → D. Then if F and P preserve colimits of chains and P
preserves initiality, there is a unique x :: P T → B such that

x ·Pα = Ψ x. (20)

Fortunately the following theorem shows that the uniqueness theorem for efficient folds is also an instance of
Theorem 7.1. So this justifies definition (19).

Theorem 7.2. Let F : Coc(C) → Coc(C) be a nested hofunctor with initial algebra α : F T → T, and let
v̄ = 〈v〉�v̄F be a parameter collection of appropriate type. Then there is a unique u : ∀L,X. (L → Coc(C) M ·X)→
T ·L →Coc(C) N ·X such that for all p : L → M ·X

u p ·αL = vX ·ΘF v̄F u p. (21)

Proof. Let the category D be defined as follows:

• The objects are functions which map pairs of endofunctors on Coc(C) to a single endofunctor. So, if R is an
object of D, and L,X : C → C are functors, then R(L,X) : C → C is a functor.

• The arrows are natural transformations k : R → S in D of type

k : (∀L,X. (L →Coc(C) M ·X) → R(L,X) →Coc(C) S(L,X)).

• The composition ◦ of k : R → S and l : S → T in D is defined by:

l◦ k = λp.(l p · k p)

where · denotes composition in Coc(C).
• The identity of this composition is then defined for each object R by id R (L,X) = λp. idR(L,X), where idR(L,X)

denotes the identity of the functor R(L,X) in Coc(C).

Now define P : Coc(C) → D on each object F and arrow γ : F → G by

P F (L,X) = F ·L
P γ (L,X) = λp.γL.

Then let B(L,X) = N ·X, and define

ΠF :: ∀A. (P A →D B) → (P(F A) →D B)
ΠF v̄ u p = vX ·ΘF v̄F u p

for all u : (∀L,X. (L → M · X) → T · L → N · X) and p : L → M · X. Then ΠF is a natural transformation,
so statement (21) follows by Theorem 7.1 provided that P preserves initiality and colimits of chains. These
properties may be verified using the fact that limits and colimits in Coc(C) are calculated pointwise from those
in C [Mac98].

Theorem 7.2 can be used to prove the following:

Theorem 7.3. Suppose that F : Coc(C) → Coc(C) has initial algebra α : F T → T. Then for all collections
of parameters v̄ of appropriate type, and all p : L → M ·X,

efoldF v̄ p = (gfoldF v̄)X ·T p.

Proof Outline Suppose v̄ = 〈v〉�v̄F , let y = gfoldF v̄ and define u : (∀L,X. (L → M ·X) → T ·L → N ·X) by

u p = yX ·T p

By the universal property of efficient folds (19)

u = efoldF v̄ ⇔ (∀p : L → M ·X : u p ·αL = vX ·ΘF v̄F u p)
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We can calculate that

u p ·αL
= definition of u

yX ·T p ·αL
= naturality of α

yX ·αM·X ·F T p
= universal property of generalised folds (17)

vX · (ΦF v̄F y)X ·F T p
= Lemma 7.1

vX ·ΘF v̄F u p)

which establishes the result.

7.3. Fusion laws for efficient folds

The following map fusion law is immediate from Theorem 7.3 and the functorality of T.

Law 7.1 (Map fusion I). Let k : L′ → L, then for all p : L → M ·X
efoldF v̄ p ·T k = efoldF v̄ (p · k)

The fusion laws of [BP99b], together with Theorem 7.3 give two further fusion laws for efficient folds:

Law 7.2 (Map fusion II). Suppose that for each i ∈ 0..m,

vi :: PiM → QiM and v′i :: PiL → QiL

where Pi and Qi are hofunctors that are independent of M. Then if p : L → M ·X
(∀i ∈ 1..m : vi ·Pip = Qip · v′i) ⇒ efoldF v̄ p = efoldF w̄ id

where w0 = v0 ·RF (p, idN) and for all i ∈ 1..m, wi = v′i.

Law 7.3 (Fold fusion). Let k : N → N ′, and suppose that for each i ∈ 0..m,

vi :: PiN → QiN and v′i :: PiN
′ → QiN

′

where Pi and Qi are hofunctors that are independent of N. Then

(∀i ∈ 0..m : Qik · vi = v′i ·Pik) ⇒ k · efoldF v0 · · · vm = efoldF v′0 · · · v′m.

This fold fusion law is an instance of a stronger law given for three specific types in [BP99b], and given here for
nests in (10). The weaker law for nests, corresponding to the above, is obtained by taking k ′ to be the identity
function in (10). The stronger law cannot be simply stated for arbitrary datatypes, so the reader is referred to
[BP99b] for details.

8. Applications

The fusion laws of the previous section are perhaps a bit obscure until applied to a concrete example. We will
now use them to give conditions under which an efficient fold can be rewritten as an ordinary fold for a small
class of nested datatypes. We will then apply this result to functions on two different datatypes: nests and lists.
We will show that there are two equivalent ways to use efficient folds to flatten a nest to a list. The two methods
correspond to the inverse methods of building a tree: recursive, or top-down, and iterative, or bottom-up. The
application to lists concerns Horner’s rule for evaluating polynomials [BdM97]. We will show that this is a
trivial consequence of the fusion laws.

We will only consider datatypes of the form:

data Collection a = Nil | Cons (a, Collection (Fun a))

where Fun is a functor. So for example, if Fun = Pair, then Collection defines nests, and if Fun = Id it defines
lists.
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The efficient fold on type Collection is identical to that on nests, except that Pair is generalised to an arbitrary
functor Fun:

efold :: ∀n.∀m.∀b.(∀a. n a) → (∀a. (m a,n (Fun a)) → n a) → (∀a. Fun (m a) → m (Fun a)) →
(∀l.(l a → m b) → Collection (l a) → n b)

efold e f g h Nil = e
efold e f g h (Cons (x,xs)) = f (h x, efold e f g (g · fun h) xs)

The fusion laws are also very similar to those for nests, but are restated here for easy reference in the proof
of Law 8.4 below. The fold fusion law has one less parameter than its counterpart for nests (10) because it is
the weaker version of the law, as given in Section 7.3. Assuming the types given to parameters e, f , g and h in
the definition of the efficient fold above, the fold and map fusion laws of Section 7.3 can be instantiated to the
following, where coll represents the map function for the datatype Collection.

Law 8.1 (Map fusion I). Let k′ : ∀a. l′ a → l a, then

efold e f g h · coll k = efold e f g (h · k)

Law 8.2 (Map fusion II). Let g′ : (∀a. Fun (l a) → l (Fun a)), then

g · fun h = h ·g′
⇒

efold e f g h = efold e (f · (h× id)) g′ id

Law 8.3 (Fold fusion). Let e′ : ∀a. n′ a, f ′ : ∀a. m a → n′ (Fun a) → n′ a and k : ∀a. n a → n′ a, then

k e = e′ and k · f = f ′ · (id× k)
⇒

k · efold e f g h = efold e′ f ′ g h

These laws can be used together to deduce the following law:

Law 8.4 (Fold Equivalence). Let e : ∀a. n a, f : (m a, n a) → n a, g : Fun (m a) → n a, h : ∀a. a → n a and
suppose there exist k : n (Fun a) → n a and k ′ : m (Fun a) → m a, then

k e = e k · f = f · (k′ × k) g · fun k′ = k′ ·g and g · fun h = k′ ·h
⇒

efold e f g h = fold e (f · (h× k))

Proof. We have

efold e f g h = fold e (f · (h× k))

⇔ universal property of fold

efold e f g h Nil = e and efold e f g h (Cons (x,xs)) = f (h x, (k · efold e f g h) xs)

⇐ definition of efold

efold e f g (g · fun h) = k · efold e f g h
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This equality is established by appealing to the fusion laws:

k · efold e f g h

= Law 8.3 (fold fusion) and functorality of ×
efold e (f · (k′ × id)) g h

= Law 8.1 (map fusion I)

efold e (f · (k′ × id)) g id · coll h

= Law 8.2 (map fusion II)

efold e f g k′ · coll h

= Law 8.1 (map fusion I)

efold e f g (k′ ·h)

= g · fun h = k′ ·h
efold e f g (g · fun h)

We will give three applications of this law: two for nests and one for lists. The two functions on nests are flatten
and size, which were cited in Section 3 as examples for which the map fusion law (11) did not directly apply.
Writing these functions as efficient folds, we have

flatten = efold [ ] (uncurry (++)) (uncurry (++)) (λx. [x])

size = efold 0 (uncurry (+)) (uncurry (+)) (λx. 1)

The flatten function flattens a nest by a method that corresponds to the inverse method of recursively building a
tree, but the fold equivalence law transforms it into a function corresponding to the inverse method of iteratively
building a tree: if m a = n a = List a, and k = k ′ = concat ·map (λ(y,z). [y,z]), then

flatten = fold [ ] ((uncurry (++)) · ((λx. [x])× k))

For the size function, we take m a = n a = Int, and k = k ′ = (2∗), which gives

size = fold 0 ((uncurry (+))((λx. 1)× (2∗)))
Finally, we notice that Horner’s rule for lists [BdM97] can be derived very simply by taking m = n, k = k ′ = g
and h = id, which leaves only two conditions:

g e = e and g · f = f · (g×g)
⇒

efold e f g id = fold e (f · (id×g))

By applying this law to the classic example of polynomial evaluation, we can see that it is a restatement of
Horner’s rule: let us = Cons (u, Cons (v, Cons (w, Nil))), then

efold 0 (+) (∗x) id us = u+ v∗ x+ w∗ x2

fold 0 (apply (+) id (∗x)) us = u+(v+(w+ 0)∗ x)∗ x

Horner’s rule was generalised to arbitrary regular datatypes in [BdM97]; whether there is a similar generalisa-
tion for nested datatypes remains to be seen.

9. Conclusion

In this paper we have given a universal construction of a fold operator that was inspired by that of [Hin00]. This
construction comes equipped with a proof principle that we have used to relate efficient folds to generalised
folds on arbitrary nested datatypes in Theorem 7.3. The performance improvement outlined in [Hin00] has
been reiterated here through the example of random access lists, and the fusion laws of [BP99b] have been
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restated in the context of efficient folds. The laws have then been used to derive a fold equivalence law that
gives conditions that are sufficient to rewrite an efficient fold as an ordinary fold. The fold equivalence law has
yet to be generalised to arbitrary datatypes.

We have observed that folds in general provide a useful definition principle for functions on nested datatypes.
Without them it is difficult to define even a function as simple as sum. We have noted that efficient folds are not
always more efficient than generalised ones, but they do capture a different pattern of computation. Furthermore,
they are arguably more closely related than generalised folds to ordinary folds, because they have a similar map
fusion law. Although the applications of nested datatypes have so far been quite limited, the example of Horner’s
rule in Section 8 suggests that the proof rules associated with efficient folds could still be useful for program
derivation on regular datatypes. It might be interesting to investigate whether there is a class of problems on
regular datatypes that can be specified as efficient folds, and then manipulated through the proof rules.

There is still a number of questions that we have yet to answer, such as when is a function on either regular
or nested datatypes a fold [GHA01], or an efficient fold? Moreover, if a function can be expressed as an effi-
cient fold, under what conditions does this give a significant improvement in performance? On the theoretical
side, there are similarities between the initial algebra definitions of generalised and efficient folds and those
of Mendler-style inductive types [UV99]. Closer inspection has shown that our definitions do not fit into the
existing framework of [UV99], but it might be possible to extend the theory to include them. There seems little
point in pursuing this theory yet though, until we have found some more interesting applications of efficient
folds and nested datatypes.
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