
FUNCTIONAL PEARL

Parsing Permutation Phrases

Arthur Baars 1, Andres Löh 2, S. Doaitse Swierstra 3

Institute of Information and Computing Sciences,
P.O. Box 80.089, 3508TB Utrecht, The Netherlands

Abstract

A permutation phrase is a sequence of elements (possibly of different types) in which
each element occurs exactly once and the order is irrelevant. Some of the permutable
elements may be optional. We show a way to extend a parser combinator library
with support for parsing such free-order constructs. A user of the library can easily
write parsers for permutation phrases and does not need to care about checking and
reordering the recognised elements. Possible applications include the generation of
parsers for attributes of XML tags and Haskell’s record syntax.

1 Introduction

Parser combinator libraries for functional programming languages are well-
known and subject to active research. Higher-order functions and the possi-
bility to define new infix operators allow parsers to be expressed in a concise
and natural notation that closely resembles the syntax of EBNF grammars.
At the same time, the user has the full abstraction power of the underlying
programming language at hand. Complex, often recurring patterns can be
expressed in terms of higher-level combinators.

A specific parsing problem is the recognition of permutation phrases. A
permutation phrase is a sequence of elements (possibly of different types) in
which each element occurs exactly once and the order is irrelevant. Some of
the permutable elements may be optional. Since permutation phrases are not
easily expressed by a context-free grammar, the usual approach is to tackle
this problem in two steps: first parse a relaxed version of the grammar, then
check whether the recognised elements form a permutation of the expected
elements. This method, however, has a number of disadvantages. Dealing

1 Email: arthurb@cs.uu.nl
2 Email: andres@cs.uu.nl
3 Email: doaitse@cs.uu.nl

1

mailto:arthurb@cs.uu.nl
mailto:andres@cs.uu.nl
mailto:doaitse@cs.uu.nl

Baars, Löh, Swierstra

with a permutation of typed values is quite cumbersome, and the problem
is often avoided by encoding the values in a universal representation, thus
adding an extra level of interpretation. Furthermore, because of the two steps
involved, error messages cannot be produced until a larger part of the input
has been consumed, and special care has to be taken to make them point to
the right position in the code.

Permutation phrases have been proposed by Cameron [1] as an extension to
EBNF grammars, not aiming at greater expressive power, but at more clarity.
Cameron also presents a pseudo-code algorithm to parse permutation phrases
with optional elements efficiently in an imperative setting. It fails, however,
to address the types of the constituents.

We show a way to extend any existing parser combinator library with
support for parsing permutations of a number of typed, potentially optional
elements. Our approach uses Haskell, relying essentially on existentially quan-
tified types, that are used to encode reordering information that permutes the
recognised elements to a canonical order. Existential types are not part of
the Haskell 98 standard [6], but are, for example, implemented in GHC and
Hugs. Additionally, we utilise lazy evaluation to make the resulting imple-
mentation efficient. The administrative part of parsing permutation phrases
has a quadratic time complexity in the number of permutable elements. The
size of the code, however, is linear in the number of permutable elements.

Possible applications include the implementation of Haskell’s read function
where it is desirable to parse the fields of data types with labelled fields in
any permutation, the parsing of XML tags which have large sets of potentially
optional attributes that may occur in any order, and the decomposition of a
query in a URI, consisting of a number of permutable key-value pairs.

The paper is organised as follows: Section 2 explains the parser com-
binators we build upon. Section 3 presents the basic idea of dealing with
permutations in terms of permutation trees and explains how trees are built
and converted into parsers. Section 4 shows how to extend the mechanism in
order to handle optional elements. In Section 5, we take a brief look at two
of the applications mentioned above, the parsing of data types with labelled
fields and the parsing of XML attribute sets. Section 6 concludes.

2 Parsing using combinator libraries

The use of a combinator library for describing parsers instead of writing them
by hand or generating them from a separate formalism is a well-known tech-
nique in functional programming. As a result, there are several excellent
libraries around. For this reason we just briefly present the interface we will
assume in subsequent sections of this paper, but do not go into the details of
the implementation. However, we want to stress that our extension is not tied
to any specific library.

We make use of a simple arrow-style [3,9] interface that is parametrised by

2

Baars, Löh, Swierstra

infixl 3 CB
infixl 4 ∗<>, $<>

class Parser p where
pFail :: p a
pSucceed :: a → p a
pSym :: Char → p Char
(∗<>) :: p (a → b) → p a → p b
(CB) :: p a → p a → p a
($<>) :: (a → b) → p a → p b
f $<> p = pSucceed f ∗<> p
parse :: p a → String → Maybe a

Fig. 1. Type class for parser combinators

the result type of the parsers and assumes a list of characters as input. It can
easily be implemented by straightforward list-of-successes parsers [2,10], but
we also have a version based on the fast, error-correcting parser combinators
of Swierstra [7,8]. A mapping to monadic-style parser combinators [4,5] or
abstracting from the type of the input tokens is possible without difficulties.

The parser interface used here is given as a type class declaration in Fig-
ure 1. The function pFail represents the parser that always fails, whereas
pSucceed never consumes any input and always returns the given result value.
The parser pSym accepts solely the given character as input. If this character
is encountered, pSym consumes and returns this character, otherwise it fails.
The ∗<> operator denotes the sequential composition of two parsers, where the
result of the first parser is applied to the result of the second. The operator
CB expresses a choice between two parsers. Finally, the application operator

$<> is a parser transformer that can be used to apply a semantic function to
a parse result. It can be defined in terms of pSucceed and ∗<>.

Many useful higher-level combinators can be built on top of these basic
ones. A small selection that we will use later in this paper is presented in
Figure 2. These parser combinators are useful if one wants to combine parsers
and is interested in the result of only some of the constituents.

3 Permutation trees

3.1 Data types

Before explaining permutation parsers, we investigate how to represent per-
mutation phrases. We decide to store the permutations of a set of elements in
a rose tree.

data Perms p a = Choice [Branch p a]
| Empty a

data Branch p a = ∀ x . Br (Perms p (x → a)) (p x)

3

Baars, Löh, Swierstra

infixl 4 $< , ∗>, ∗<
($<) :: Parser p ⇒ a → p b → p a
f $< p = const f $<> p

(∗<) :: Parser p ⇒ p a → p b → p a
p ∗< q = const $<> p ∗<> q

(∗>) :: Parser p ⇒ p a → p b → p b
p ∗> q = flip const $<> p ∗<> q

pParens :: Parser p ⇒ p a → p a
pParens p = pSym ’(’ ∗> p ∗< pSym ’)’

Fig. 2. Some useful parser combinators

The data types are parametrised by a type constructor p (e.g. the parser type)
and a result type a.

Each path from the root to a leaf in the tree represents a particular per-
mutation. Figure 3 illustrates this idea for three elements a, b, c. If the
permutations are grouped in such a way that different permutations with a
common prefix share the same subtree, the number of choices in each node
will be limited by the number of permutable elements.

a

b

c

2

c

b

2

b

a

c

2

c

a

2

c

a

b

2

b

a

2

Fig. 3. A permutation tree containing three elements

A value of type Branch stores a subtree together with an element. The
subtree returns a function that, applied to the element, computes a value
of the required result type. Thus, the existentially quantified type of the
element stored in a branch is used to hide the order in which the types in a
subtree occur; all subtrees in a Choice node share a common type because
all correspond to a permutation of the same set of elements. To show that
reordering is almost completely determined by the type of the components,
we use the convention that values, parsers and permutation trees are named
v , p, and t , respectively, indexed by their type.

The idea that each path in the tree represents the parser for one of the
possible permutations is reflected by the following simple conversion function
from permutation trees to parsers.

4

Baars, Löh, Swierstra

pPerms :: Parser p ⇒ Perms p a → p a
pPerms (Empty va) = pSucceed va

pPerms (Choice chs) = foldr (CB) pFail (map pars chs)
where pars (Br tx→a px) = flip ($) $<> px ∗<> pPerms tx→a

It might be surprising at first sight that the last line does not read:

where pars (Br tx→a px) = pPerms tx→a ∗<> px

But using this more obvious definition, the elements at the leaves of the per-
mutation tree would be recognised first by the constructed parser. Therefore,
the permutation tree would have to be unfolded completely before the first
element could be parsed. This would result in O(n!) memory usage where n
is the number of permutable elements.

Fortunately, because we are parsing a permutation, reversing the order of
the constituents when constructing the parser does not change the semantics.
In the “flipped” variant, lazy evaluation ensures that only the path corre-
sponding to the recognised permutation is unfolded.

3.2 Building a permutation tree

Permutation trees are created by adding the elements of the permutation one
by one to an initially empty tree.

add :: Perms p (x → a) → p x → Perms p a
add tx→a@(Empty) px = Choice [Br tx→a px]
add tx→a@(Choice chs) px = Choice (first : others)

where first = Br tx→a px

others = map ins chs
ins (Br ty→x→a py)= Br (add (mapPerms flip ty→x→a) px) py

If we already have constructed a non-empty permutation tree, we can add a
new element px by inserting it in all possible positions to every permutation
in the tree. The function add explicitly constructs the tree that represents the
permutation in which px is the top element; for each branch, the top element
is left unchanged, and px is inserted everywhere (by a recursive call to add)
in the subtree. Because the new element and the top element of the branch
are now swapped, the function resulting from the subtree of the branch gets
its arguments passed in the wrong order, which is repaired by applying flip to
that function.

The function mapPerms is a map on permutation trees. In a branch, va→b

is composed with the function that is resulting from the subtree.

mapPerms :: (a → b) → Perms p a → Perms p b
mapPerms va→b (Empty va) = Empty (va→b va)
mapPerms va→b (Choice chs) = Choice (map (mapBranch va→b) chs)

mapBranch :: (a → b) → Branch p a → Branch p b
mapBranch va→b (Br tx→a px) = Br (mapPerms (va→b◦) tx→a) px

5

Baars, Löh, Swierstra

By defining the following combinators for constructing permutation parsers
we can use a similar notation for permutation parsers as for normal parsers.

succeedPerms :: a → Perms p a
succeedPerms x = Empty x

(<∗<>>) :: Parser p ⇒ Perms p (a → b) → p a → Perms p b
perms <∗<>> p = add perms p

(<$<>>) :: Parser p ⇒ (a → b) → p a → Perms p b
f <$<>> p = succeedPerms f <∗<>> p

An example with three permutable elements, corresponding to the tree in
Figure 3, can now be realised by:

pPerms ((,,) <$<>> pInt <∗<>> pChar <∗<>> pBool)

Suppose pInt , pChar , and pBool are parsers for literals of type Int , Char ,
and Bool , respectively. Then all permutations of an integer, a character and
a boolean are accepted, and the result of a successful parse will always be of
type (Int ,Char ,Bool).

3.3 Separators

Often the permutable elements are separated by symbols that do not carry
meaning—typically commas or semicolons. Consider extending the three-
element example to the Haskell tuple syntax: not just the elements, but also
the parentheses and the commas should be parsed. Since there is one sepa-
ration symbol less than there are permutable elements, our current variant of
pPerms cannot handle this problem.

Therefore we define pPermsSep as a generalisation of pPerms that accepts
an additional parser for the separator as an argument. The semantics of the
separators are ignored for the result.

pPermsSep :: Parser p ⇒ p b → Perms p a → p a
pPermsSep sep perm = p2p (pSucceed ()) sep perm

The function p2p now converts a permutation tree into a parser almost in the
same way as the former pPerms , except that before each permutable element
a separator is parsed. To prevent that a separator is expected before the
first permutable element, we make use of the following simple trick. The p2p
function expects two extra arguments: the first one will be parsed immediately
before the first element, and the second will be used subsequently. Using
pSucceed () as first extra argument in pPermsSep leads to the desired result.

p2p :: Parser p ⇒ p c → p b
→ Perms p a → p a

p2p (Empty va) = pSucceed va

p2p fsep sep (Choice chs) = foldr (CB) pFail (map pars chs)
where pars (Br tx→a px) = flip ($) $< fsep ∗<> px ∗<> p2p sep sep tx→a

6

Baars, Löh, Swierstra

The pPerms function can now be implemented in terms of pPermsSep.

pPerms :: Parser p ⇒ Perms p a → p a
pPerms = pPermsSep (pSucceed ())

To return to the small example, triples of an integer, a character, and a
boolean—in any order—are parsed by:

pParens (pPermsSep (pSym ’,’) ((,,) <$<>> pInt <∗<>> pChar <∗<>> pBool))

4 Adding optional elements

This section shows how the permutation parsing mechanism can be extended
such that it can deal with optional elements. Optional elements can be rep-
resented by parsers that can recognise the empty string and return a default
value for this element. Calling the pPermsSep function on a permutation tree
that contains optional elements leads to ambiguous parsers. Consider, for ex-
ample, the tree in Figure 3 containing all permutations of a, b and c. Suppose
b can be empty and we want to recognise ac. This can be done in three dif-
ferent ways since the empty b can be recognised before a, after a or after c.
Fortunately, it is irrelevant for the result of a parse where exactly the empty
b is derived, since order is not important. This allows us to use a strategy
similar to the one proposed by Cameron [1]: parse nonempty constituents as
they are seen and allow the parser to stop if all remaining elements are op-
tional. When the parser stops the default values are returned for all optional
elements that have not been recognised.

To implement this strategy we need to be able to determine whether a
parser can derive the empty string and split it into its default value and its
non-empty part, i.e. a parser that behaves the same except that it does not
recognise the empty string. The splitting of parsers is represented by the
ParserSplit class that is an extension of the normal Parser class. Most parser
combinator libraries can be easily adapted to cover this extension.

class Parser p ⇒ ParserSplit p where
pEmpty :: p a → Maybe a
pNonempty :: p a → Maybe (p a)

In the solution that does not deal with optional elements a parser for a per-
mutation follows a path from the root of a permutation tree to a leaf, i.e. an
Empty node. In the presence of optional elements, however, a parser may
stop in any node that stores only optional elements. We adapt the Perms
data type to incorporate this additional information. If all elements stored in
a tree are optional then their default values are stored in defaults , otherwise
defaults is Nothing . The parser stored in each Branch is not allowed to derive
the empty string. Note that we do not need an Empty constructor anymore,
since its semantics can be represented as a Choice node with an empty list of
branches.

7

Baars, Löh, Swierstra

data Perms p a = Choice {defaults :: Maybe a, branches :: [Branch p a]}
The function p2p constructs a parser out of a permutation tree. If there are
default values stored in defaults then the constructed parser can derive the
empty string, returning those values.

p2p :: Parser p
⇒ p c → p b → Perms p a → p a

p2p fsep sep ta→b = foldr (CB) empty nonempties
where empty = maybe pFail pSucceed (defaults ta→b)

nonempties = map pars (branches ta→b)
pars (Br tx→a px) = flip ($) $< fsep ∗<> px

∗<> p2p sep sep tx→a

A tuple, that represents a parser split into its empty part and its non-empty
part, can describe four different kinds of parsers, as depicted in the following
table:

empty part non-empty part
Nothing Nothing pFail
Just Nothing pSucceed
Nothing Just required element
Just Just optional element

The new definition of add reflects the four different cases. In the first case
the resulting tree represents a failing permutation parser, i.e. it has no default
values and no branches. In the second case the value stored in the empty
part of the parser is pushed into the tree, only modifying the semantics of
the tree but keeping its structure. In the cases where an element is added
the non-empty part of the element is inserted in the tree in the same way as
in the original definition of add . For an optional element the default value is
combined with the defaults of the permutation tree.

add :: Perms p (a → b)
→ (Maybe a,Maybe (p a))
→ Perms p b

add ta→b@(Choice da→b bsa→b) mpa = case mpa of
(Nothing ,Nothing) → Choice Nothing []
(Just va ,Nothing) → Choice (fmap ($va) da→b) (appSem va)
(Nothing , Just pa) → Choice Nothing (insert pa)
(Just va , Just pa) → Choice (fmap ($va) da→b) (insert pa)

where insert pa = Br ta→b pa : map ins bsa→b

ins (Br tx→a→b px)= Br (add (mapPerms flip tx→a→b) mpa) px

appSem va = map (mapBranch ($va)) bsa→b

The function mapPerms for the new Perms data type is defined as follows:

mapPerms :: (a → b) → Perms p a → Perms p b
mapPerms va→b ta = Choice (fmap va→b (defaults ta))

(map (mapBranch va→b) (branches ta))

8

Baars, Löh, Swierstra

Since we no longer have an Empty constructor the function succeedPerms is
now defined as:

succeedPerms :: a → Perms p a
succeedPerms x = Choice (Just x) []

Using the functions from the ParserSplit class we can straightforwardly define
a new sequence operator for permutation parsers.

(<∗<>>) :: ParserSplit p
⇒ Perms p (a → b) → p a → Perms p b

perms <∗<>> p = add perms (pEmpty p, pNonempty p)

5 Applications

5.1 XML attributes

We will now demonstrate the use of the permutation parsers by showing how
to parse XML tags with attributes. For simplicity, we just consider one tag
(the img tag of XHTML) and only deal with a subset of the attributes allowed.
In a Haskell program, this tag might be represented by the following data type.

data XHTML = Img {src :: URI
, alt :: Text
, longdesc :: Maybe URI
, height :: Maybe Length
,width :: Maybe Length
}

| . . .

Our variant of the img tag has five attributes of three different types. We use
Haskell’s record syntax to keep track of the names. The first two attributes
are mandatory whereas the others are optional. We choose the Maybe variant
of their types to reflect this optionality. Our parser should be able to parse the
attributes in any order, where any of the optional arguments may be omitted.
For the parsing process, we ignore whitespace and assume that there is a
parser pTok that consumes just the given token and fails on any other input.

Using the pPerms combinator, writing the parser for the img tag is easy:

pImgTag :: ParserSplit p ⇒ p XHTML
pImgTag = pTok "<" ∗> pTok "img" ∗> attrs ∗< pTok "/>"

where
attrs = pPerms (Img <$<>> pField "src" pURI

<∗<>> pField "alt" pText
<∗<>> pOptField "longdesc" pURI
<∗<>> pOptField "height" pLength
<∗<>> pOptField "width" pLength

)

9

Baars, Löh, Swierstra

The order in which we denote the attributes determines the order in which
the results are returned. Therefore, we can apply the Img constructor to
form a value of the XHTML data type. The two helper functions pField
and pOptField are used to parse a mandatory and an optional argument,
respectively.

pField :: Parser p ⇒ String → p a → p a
pField f p = pTok f ∗> pSym ’=’ ∗> p

pOptField :: Parser p ⇒ String → p a → p (Maybe a)
pOptField f p = Just $<> pField f p

CB pSucceed Nothing

5.2 Haskell’s record syntax

Haskell allows data types to contain labelled fields. If one wants to construct
a value of that data type, one can make use of these names. The advantage
is that the user does not need to remember the order in which the fields of
the constructor have been defined. Furthermore, all fields are considered as
optional. If a field is not explicitly set to a value, it is silently assumed to
be ⊥.

Whereas compilers implement these features as a syntax for construct-
ing values inside of Haskell programs, the read function that both GHC and
Hugs generate with help of the deriving construct lacks this functionality.
Although this behaviour is permitted by the Haskell Report, the resulting
asymmetry is unfortunate.

We show here that the code that would do the job is easy to write or
generate using the pPermsSep combinator.

pImg :: ParserSplit p ⇒ p XHTML
pImg = pTok "Img" ∗> pTok "{" ∗> fields ∗< pTok "}"

where
fields = pPermsSep (pSym ’,’)

(Img <$<>> pRecField "src" pURI
<∗<>> pRecField "alt" pText
<∗<>> pRecField "longdesc" (pMaybe pURI)
<∗<>> pRecField "height" (pMaybe pLength)
<∗<>> pRecField "width" (pMaybe pLength)

)

The pMaybe combinator just parses the Maybe variant of a data type, and the
pRecField makes each field optional.

pRecField :: Parser p ⇒ String → p a → p a
pRecField f p = pField f p

CB pSucceed ⊥

10

Baars, Löh, Swierstra

6 Conclusion

We have presented a way to extend a parser combinator library with the
functionality to parse free-order constructs. It can be placed on top of any
combinator library that implements the Parser interface. A user of the library
can easily write parsers for free-order constructs and does not need to care
about checking and reordering the parsed elements. Due to the use of exis-
tentially quantified types the implementation of reordering is type safe and
hidden from the user.

The underlying parser combinators can be used to handle errors, such as
missing or duplicate elements, since the extension inherits their error-reporting
or error-repairing properties. Figure 4 shows an example GHCi session that
demonstrates error recovery with the UU Parsing [8] library.

We have shown how our extension can be used to parse XML attributes and
Haskell records. Other interesting examples mentioned by Cameron [1] include
citation fields in BibTEX bibliographies and attribute specifiers in C declara-
tions. Their pseudo-code algorithm uses a similar strategy. It does not show,
however, how to maintain type safety by undoing the change in semantics re-
sulting from reordering, nor can it deal with the presence of separators between
free-order constituents.

UU_Parsing_Demo> let pOptSym x = pSym x CB pSucceed ’_’

UU_Parsing_Demo> let ptest = pPerms $ (,,) <$<>> pList (pSym ’a’)
<∗<>> pSym ’b’

<∗<>> pOptSym ’c’

:: Parser Char (String ,Char ,Char)
UU_Parsing_Demo> t ptest "acb"

Result:
("a",’b’,’c’)

UU_Parsing_Demo> t ptest ""

Symbol ’b’ inserted at end of file; ’b’ or ’c’ or (’a’)* expected.
Result:
("",’b’,’_’)

UU_Parsing_Demo> t ptest "cdaa"

Errors:
Symbol ’d’ before ’a’ deleted; ’b’ or (’a’)* expected.
Symbol ’b’ inserted at end of file; ’a’ or ’b’ expected.
Result:
("aa",’b’,’c’)

UU_Parsing_Demo> t ptest "abd"

Errors:
Symbol ’d’ at end of file deleted; ’c’ or eof expected.
Result:
("a",’b’,’_’)

Fig. 4. Example GHCi session (line breaks added for readability)

11

Baars, Löh, Swierstra

References

[1] Cameron, R. D., Extending context-free grammars with permutation phrases,
ACM Letters on Programming Languages and Systems 2 (1993), pp. 85–94.
URL http://www.acm.org/pubs/toc/Abstracts/1057-4514/176490.html

[2] Fokker, J., Functional parsers, in: Advanced Functional Programming, First
International Spring School on Advanced Functional Programming Techniques,
LNCS 925 (1995), pp. 1–23.
URL http://www.cs.uu.nl/~jeroen/article/parsers/parsers.ps

[3] Hughes, J., Generalising monads to arrows, Science of Computer Programming
37 (2000), pp. 67–111.

[4] Hutton, G. and H. Meijer, Monadic parser combinators, Journal of Functional
Programming 8 (1988), pp. 437–444.

[5] Leijen, D., Parsec, a fast combinator parser (2001).
URL http://www.cs.uu.nl/~daan/parsec.html

[6] Peyton-Jones, S. and J. Hughes, editors, “Report on the Programming
Language Haskell 98,” 1999.
URL http://www.haskell.org/onlinereport

[7] Swierstra, S. D., Parser combinators: from toys to tools, Haskell Workshop,
2000.
URL http://www.cs.uu.nl/~doaitse/Papers/2000/HaskellWorkshop.pdf

[8] Swierstra, S. D., Fast, error repairing parser combinators (2001).
URL http://www.cs.uu.nl/groups/ST/Software/UU_Parsing

[9] Swierstra, S. D. and L. Duponcheel, Deterministic, error correcting combinator
parsers, in: Advanced Functional Programming, Second International Summer
School on Advanced Functional Programming Techniques, LNCS 1129 (1996),
pp. 184–207.
URL http://www.cs.uu.nl/groups/ST/Software/UU_Parsing/AFP2.ps

[10] Wadler, P., How to replace failure with a list of successes, in: Functional
Programming Languages and Computer Architecture, LNCS 201 (1985), pp.
113–128.

12

http://www.acm.org/pubs/toc/Abstracts/1057-4514/176490.html
http://www.cs.uu.nl/~jeroen/article/parsers/parsers.ps
http://www.cs.uu.nl/~daan/parsec.html
http://www.haskell.org/onlinereport
http://www.cs.uu.nl/~doaitse/Papers/2000/HaskellWorkshop.pdf
http://www.cs.uu.nl/groups/ST/Software/UU_Parsing
http://www.cs.uu.nl/groups/ST/Software/UU_Parsing/AFP2.ps

	Introduction
	Parsing using combinator libraries
	Permutation trees
	Data types
	Building a permutation tree
	Separators

	Adding optional elements
	Applications
	XML attributes
	Haskell's record syntax

	Conclusion
	References

