Calculating the Sieve
of Eratosthenes

Lambert Meertens
Kestrel Institute & Utrecht University



The Sieve, informally

e Write down the successive “plurals’:
2,3, 4 ...

e Repeat:

— Take the first number that is
not circled or crossed out

— Circle it
— Cross out its proper multiples



Shown in action ...

-1 =1 ~1 =

B PO PO OO

O X © ©

BB K o

11
11
11
11

I

13
13
13
13

XXX =
& B o

5 ...



Folklore Functional Program

There is a well-known “folklore”
functional program for the Sieve

How to derive that program??

By calculation, of course!



T he Essence of Sieve-hood
The Sieve produces a stream of primes,

and that stream is used
while it is being produced

to filter itself



Preliminaries: Streams

Always an infinite list
Codomain of final coalgebra
Corresponding anamorphism:
hx = fx:h(gXx)
Notation:
h = [f.rg]



Particular case

(f ~(+1))], in which (+1) is the
successor function on naturals

Claim:
(fa(+1)Jn = map f [n..]



Proof:

map f [n..]

{definition of “.."}

map f (n: [n+1..])

fn:

{definition of map}
map f [n+1..]



Preliminaries: Primes
If primeQO = 2, primel = 3, prime 2=5, etc.

primes = map prime [0..]

Needs characterization of function prime



Being Prime

A prime is a plural not divisible
by a smaller prime

So prime n is the head of the stream
remaining after removing from [2..]

the multiples of prime 0O, prime 1, ...
up to but not including prime n



In Haskell

primen = head (remvton [2..])
where
remvto O = Iid

remvto (n+1) =
filter (notdiv (prime n)) - remvto n

notdivdn = n "mod d # 0O

This is actually an effective definition



Strengthening

head(remvton [2..]) = primen

tail (remvton [2..]) =
remvto n [(prime n)+ 1 ..]

So

remvton [2..] =
primen : remvton [(primen)+1 ..]



Generalize

primes = pp 0O
where

pp N map prime [n..]

SO
ppbn = primen : pp(n+1)



Calculating the solution

We want a solution in ‘sieve’” form:
ppn = sieve(remvton [2..])

for some function sieve

Derive sieve by matching to the
anamorphism pattern

Abbreviate prime n to p throughout



Left-hand side

pp n
= {sieve formj}

sieve (remvton [2..])

= {property of remvto}
sieve (p:remvton [p+1..])

= {abbreviating to ‘ns’}
sieve (p: ns)



Right-hand side

p:pp(n+l)
= {sieve form}
p:sieve (remvto (n+1)[2..])
= {definitions}
p : sieve (filter (notdiv p) (remvto n [2..]))
= {property of remvto}
p : sieve (filter (notdiv p) (p: remvto n [p+1..]))
= {abbreviating as before}
p : sieve (filter (notdiv p) (p : ns))
= {notdiv pp = False, definition of filter}
p : sieve (filter (notdiv p) ns)



T he Solution for sieve

Any definition of sieve equating the final
expressions of the last two calculations:

sieve (p:.ns) = p:sieve(filter (notdiv p) ns)

will do

If we forget that p and ns denote
abbreviations, this is a fine definition



So for primes

primes

= {definition}
map prime [O..]

= {definition}
pp O

= {sieve form}
sieve (remvto 0 [2..])

= {definitions}
sieve [2..]



Wrapping it up:

primes = sieve [2..]
where
sieve (p: ns) = p:sieve (filter (notdiv p) ns)



