Calculating the Sieve of Eratosthenes

Lambert Meertens Kestrel Institute & Utrecht University

The Sieve, informally

- Write down the successive "plurals": 2, 3, 4, ...
- Repeat:
 - Take the first number that is not circled or crossed out
 - Circle it
 - Cross out its proper multiples

Shown in action . . .

2	3	4	5	6	7	8	9	10	11	12	13	14	15	• • •
2	3	×	5	Ŕ	7	8	9	10	11	1/2	13	1)4	15	• • •
2	3	×	5	Ŕ	7	8	X	10	11	1/2	13	1)4	150	• • •
2	3	×	5	Ŕ	7	8	X	10	11	1,2	13	1)4	150	• • •

Folklore Functional Program

There is a well-known "folklore" functional program for the Sieve How to derive that program?

By calculation, of course!

The Essence of Sieve-hood

The Sieve produces a stream of primes, and that stream is used *while it is being produced* to filter itself

Preliminaries: Streams

Always an *infinite* list Codomain of final coalgebra Corresponding anamorphism: hx = fx:h(gx)Notation:

$$h = \llbracket f \, \vartriangle \, g
rbracket$$

Particular case

 $[[f \triangle (+1)]]$, in which (+1) is the successor function on naturals Claim:

$$\llbracket f \vartriangle (+1) \rrbracket n = map f [n . .]$$

Proof:

Preliminaries: Primes

If prime 0 = 2, prime 1 = 3, prime 2 = 5, etc. $primes = map \ prime \ [0..]$

Needs characterization of function prime

Being Prime

A prime is a plural not divisible by a smaller prime

So prime n is the head of the stream remaining after removing from [2..] the multiples of prime 0, prime 1, ..., up to but not including prime n

In Haskell

prime n = head (remvto n [2..])where

remvto 0 = id remvto (n+1) = $filter (notdiv (prime n)) \cdot remvto n$ $notdiv d n = n `mod` d \neq 0$

This is actually an effective definition

Strengthening

head(remvto n [2..]) = prime n
tail (remvto n [2..]) =
 remvto n [(prime n) + 1 ..]

So

Generalize

primes = pp 0
where
pp n = map prime [n..]

So

ppn = primen : pp(n+1)

Calculating the solution

We want a solution in "sieve" form: ppn = sieve(remvto n [2..])for some function *sieve*

Derive *sieve* by matching to the anamorphism pattern

Abbreviate *prime n* to *p* throughout

Left-hand side

pp n
= {sieve form}
sieve (remvto n [2..])
= {property of remvto}
sieve (p: remvto n [p+1..])
= {abbreviating to 'ns'}
sieve (p: ns)

Right-hand side

```
= p: pp(n+1) \\ \{sieve form\}
```

- p: sieve(remvto(n+1)[2..])
- {definitions}
 - *p*: *sieve* (*filter* (*notdiv p*) (*remvto n* [2..]))
- {property of *remvto*}
 - p: sieve (filter (notdiv p) (p: remvto n [p+1..]))
 {abbreviating as before}
 - *p*: sieve (filter (notdiv *p*) (*p*: *ns*))
- = {notdiv p p = False, definition of filter}
 p : sieve (filter (notdiv p) ns)

(16)

=

=

=

The Solution for sieve

Any definition of *sieve* equating the final expressions of the last two calculations:

sieve(p:ns) = p:sieve(filter(notdiv p) ns)will do

If we forget that *p* and *ns* denote abbreviations, this is a fine definition

So for primes ... primes {definition} _ map prime [0..] {definition} _ *pp* 0 {sieve form} =sieve (remvto 0 [2..]) {definitions} =*sieve* [2..]

(18)

Wrapping it up:

where

sieve(p:ns) = p:sieve(filter(notdiv p) ns)