
Calculating the Sieve

of Eratosthenes

Lambert Meertens

Kestrel Institute & Utrecht University

(1
)



The Sieve, informally

• Write down the successive “plurals”:
2, 3, 4, . . .

• Repeat:
– Take the first number that is

not circled or crossed out
– Circle it
– Cross out its proper multiples

(2
)



Shown in action . . .

2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . .

2© 3 4�� 5 6�� 7 8�� 9 ��10 11 ��12 13 ��14 15 . . .

2© 3© 4�� 5 6�� 7 8�� 9�� ��10 11 ��12 13 ��14 ��15 . . .

2© 3© 4�� 5© 6�� 7 8�� 9�� ��10 11 ��12 13 ��14 ��15 . . .

(3
)



Folklore Functional Program

There is a well-known “folklore”
functional program for the Sieve

How to derive that program?

By calculation, of course!

(4
)



The Essence of Sieve-hood

The Sieve produces a stream of primes,
and that stream is used

while it is being produced

to filter itself

(5
)



Preliminaries: Streams

Always an infinite list

Codomain of final coalgebra

Corresponding anamorphism:

h x = f x : h (g x )

Notation:

h = [(f �g)]

(6
)



Particular case

[(f � (+1))], in which (+1) is the
successor function on naturals

Claim:

[(f � (+1))] n = map f [n . . ]

(7
)



Proof:

map f [n . . ]

= {definition of ‘ . . ’}
map f (n : [n+1. . ])

= {definition of map}
f n : map f [n+1. . ]

(8
)



Preliminaries: Primes

If prime 0 = 2, prime 1 = 3, prime 2 = 5, etc.

primes = map prime [0. . ]

Needs characterization of function prime

(9
)



Being Prime

A prime is a plural not divisible
by a smaller prime

So prime n is the head of the stream
remaining after removing from [2. . ]

the multiples of prime 0, prime 1, . . . ,
up to but not including prime n

(1
0
)



In Haskell

prime n = head (remvto n [2. . ])

where
remvto 0 = id
remvto (n+1) =

filter (notdiv (prime n)) · remvto n
notdiv d n = n m̀od ` d �= 0

This is actually an effective definition

(1
1
)



Strengthening

head(remvto n [2. . ]) = prime n

tail (remvto n [2. . ]) =

remvto n [(prime n) + 1 . . ]

So

remvto n [2. . ] =

prime n : remvto n [(prime n) + 1 . . ]

(1
2
)



Generalize

primes = pp 0
where

pp n = map prime [n . . ]

So

pp n = prime n : pp (n+1)

(1
3
)



Calculating the solution

We want a solution in “sieve” form:

pp n = sieve (remvto n [2. . ])

for some function sieve

Derive sieve by matching to the
anamorphism pattern

Abbreviate prime n to p throughout

(1
4
)



Left-hand side

pp n
= {sieve form}

sieve (remvto n [2. . ])

= {property of remvto}
sieve (p : remvto n [p+1. . ])

= {abbreviating to ‘ns’}
sieve (p : ns)

(1
5
)



Right-hand side
p : pp (n+1)

= {sieve form}
p : sieve (remvto (n+1) [2. . ])

= {definitions}
p : sieve (filter (notdiv p) (remvto n [2. . ]))

= {property of remvto}
p : sieve (filter (notdiv p) (p : remvto n [p+1 . . ]))

= {abbreviating as before}
p : sieve (filter (notdiv p) (p : ns))

= {notdiv p p = False, definition of filter}
p : sieve (filter (notdiv p) ns)(1

6
)



The Solution for sieve

Any definition of sieve equating the final
expressions of the last two calculations:

sieve (p : ns) = p : sieve (filter (notdiv p) ns)

will do

If we forget that p and ns denote
abbreviations, this is a fine definition

(1
7
)



So for primes . . .

primes
= {definition}

map prime [0. . ]

= {definition}
pp 0

= {sieve form}
sieve (remvto 0 [2. . ])

= {definitions}
sieve [2. . ]

(1
8
)



Wrapping it up:

primes = sieve [2. . ]

where

sieve (p : ns) = p : sieve (filter (notdiv p) ns)

(1
9
)


