
Querying schemas with access restrictions

Michael Benedikt
Oxford University, UK

michael.benedikt@cs.ox.ac.uk

Pierre Bourhis
Oxford University, UK

pierre.bourhis@cs.ox.ac.uk

Clemens Ley
Oxford University, UK

clemens.ley@cs.ox.ac.uk

ABSTRACT
We study veri�cation of systems whose transitions consist of
accesses to a Web-based data-source. An access is a lookup
on a relation within a relational database, �xing values for
a set of positions in the relation. For example, a transition
can represent access to a Web form, where the user is re-
stricted to �lling in values for a particular set of �elds. We
look at verifying properties of a schema describing the possi-
ble accesses of such a system. We present a language where
one can describe the properties of an access path, and also
specify additional restrictions on accesses that are enforced
by the schema. Our main property language, AccLTL, is
based on a �rst-order extension of linear-time temporal logic,
interpreting access paths as sequences of relational struc-
tures. We also present a lower-level automaton model, A-
automata, which AccLTL speci�cations can compile into.
We show that AccLTL and A-automata can express static
analysis problems related to �querying with limited access
patterns� that have been studied in the database literature
in the past, such as whether an access is relevant to an-
swering a query, and whether two queries are equivalent in
the accessible data they can return. We prove decidability
and complexity results for several restrictions and variants
of AccLTL, and explain which properties of paths can be
expressed in each restriction.

1. INTRODUCTION
Many data sources do not expose either a bulk export

facility or a query-based interface, enforcing instead many
restrictions on the way data is accessed. For example, access
to data may only be possible through Web forms, which
require bindings for particular �elds in the relation [18, 4].
Querying with limited access patterns also arises in other
middleware contexts (e.g. federated access to data in Web
services) as well as in construction of query interfaces on
top of pre-determined indexed accesses [22]. For example,
a Web telephone directory might allow several Web forms
that serve as access methods to the underlying data. It may

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 3
Copyright 2011 VLDB Endowment 2150-8097/11/11... $ 10.00.

have an access method AcM1 accessing a relation

Mobile#(name,postcode, street,phoneno),

where AcM1 allows one to enter a mobile phone customer's
name (the underlined �eld) and access the corresponding set
of tuples containing a postal code, mobile phone number and
street name. The same site might have an access method
AcM2 on relation

Address(street, postcode, name,houseno)

allowing the user to enter a street name and postcode, re-
turning all corresponding resident names and housenumbers.
Formally an access method consists of a relation and a col-
lection of input positions: for AcM1, position 1 is the sole
input position, while for AcM2 the �rst two positions are
input. An access consists of an access method plus a bind-
ing for the input positions � for example putting �Smith�
into method AcM1 is an access. The response to an access
is a collection of tuples for the relation that agree with the
binding given in the access. A schema of this sort de�nes a
collection of access paths: sequences consisting of accesses
and their responses.
The impact of �limited access patterns� has thus been the

subject of much study in the past decade. It is known that in
the presence of limited access patterns, there may be no ac-
cess path that completely answers the query, and there may
also be many quite distinct paths. For example, the query
Address(X,Y, �Jones�, Z) asking for the address of Jones is
not answerable using the access methods AcM1 and AcM2

above. There are certainly many ways to obtain the max-
imal answers: one could begin by obtaining all the street
names and postcodes associated with Jones in the Mobile#
table, entering these into the Address table to see if they
match Jones, then taking all the new resident names we
have discovered and repeating the process, until a �xedpoint
is reached. If, however, Jones does not occur as a name
in Mobile#, then this process will not yield Jones' tuple in
Address. In general it is known [17] that for any conjunctive
query one can construct (in linear time) a Datalog program
that produces the maximal answers to a query under access
patterns: the program simply tries all possible valid accesses
on the database, as in the brute-force algorithm above.
In the absence of a complete plan, how can we determine

which strategy for making accesses is best? Recent works
[4, 3] have proposed optimizing recursive plans, using access
pattern analysis to determine that certain kinds of accesses
can not extend to a useful path. An example is the work in
[3] which proposes limiting the number of accesses to be ex-
plored by determining that some accesses are not �relevant�

Mobile#(“Smith”,
?,?,?)

Address(“Parks Rd”,OX13QD,?,?)

Known Facts=
Mobile#(“Smith”,OX13QD,“Parks Rd”,5551212)
…

Known Facts=
Address(“Parks Rd”,OX13QD,“Smith”,13),
Address(“Parks Rd”,OX13QD,“Jones”,16),
Mobile#(“Smith”,OX13QD,“Parks Rd”,5551212)…

Known Facts = ∅

Known Facts= ∅

...

...

Figure 1: Tree of possible paths associated with a

schema

to a query. An access is long term relevant if there is an
access path that begins with the access and uncovers a new
query result, where the removal of the access results in the
new result not being discovered. [3] gives the complexity of
determining relevance for a number of query languages.
Long term relevance is only one property that can be used

to measure the value of making a particular access � for ex-
ample we may want to know whether there is an access that
reveals several values in the query result. Furthermore, �lim-
ited access patterns� represent only one possible restriction
that limits the possible access paths through a web interface.
Many other restrictions may be enforced, e.g:
• Restrictions that follow from integrity constraints on
the data: e.g. a mobile phone customer name will not
(arguably) overlap with a street name. Thus in an it-
erative process for answering the query given above,
we should not bother to make accesses to the Mobile#
table using street names we have acquired earlier in
the process. It is also easy to see that key constraints,
and more generally functional dependencies, can play
a crucial role in determining whether an access is rel-
evant.
• Access order restrictions: e.g. before making any ac-
cess to Mobile#, the interface may require a web user
to have made at least one access to Address.
• Data�ow restrictions; before making an access to Mobile#
on a name, the web user must have received that name
as a response to a call to Address.

Ideally, a query processor should be able to inspect an ac-
cess and determine whether it is a good candidate for use,
where the assumptions on the paths as well as the notion of
�good candidate� could be speci�ed on a per-application ba-
sis. In this paper we look for a general solution to specifying
and determining which accesses are promising: a language
for querying the access paths that can occur in a schema.
We show that every schema can be associated with a labelled
transition system (LTS), with transitions for each access and
nodes for each �revealed instance� (information known after
a set of accesses). A fragment of the LTS for the schema
with access methods AcM1 and AcM2 is given in Figure 1.
Paths through the LTS represent possible access/response
sequences of the Web-based datasource. There are in�nitely
many paths � in fact every access could have many possible
responses. But the access restrictions in the schema place
limitations on what paths one can �nd in the LTS. We can
then identify a �query on access paths� with a query over

this transition system. This work will provide a language
that allows the user to ask whether a given kind of path
through instances of the schema is possible: e.g. is there
a path that leads to an instance where a given conjunctive
query holds, but where the path never uses access AcM1? Is
there a path that satis�es a given set of additional data�ow,
access order restrictions, or data integrity constraints?
Paths are often queried with temporal logic [15]. We will

look at natural variations of First-Order Linear Temporal
Logic (FOLTL) for querying access paths. We look at a
family of languages denoted AccLTL(L) (�Access LTL�), pa-
rameterized by a fragment L of relational calculus. It has
a two-tiered structure: at the top level are temporal opera-
tors (�eventually�, �until�) that describe navigation between
transitions in a path. The second tier looks at a particular
transition, where we have �rst-order (i.e. relational calcu-
lus) queries that can ask whether the transitions satisfy a
given property described in L. The relational vocabulary we
consider for the �lower tier� will allow us to describe transi-
tions given by accesses; it allows us to refer to the bindings
of the access, the access method used, and the pre- and
post-access versions of each schema relation. Consider the
following AccLTL sentence:

(¬∃n∃p ∃s∃ph Mobile#pre(n, p, s, ph)) U

(∃n IsBindAcM1(n) ∧ ∃s∃p ∃h Addresspre(s, p, n, h))

The relational query prior to the �until� symbol U states
that there are no entries in Mobile#pre � the Mobile# ta-
ble prior to the access. The query after the until symbol U
states that an access was done with method AcM1 and bind-
ing n, where value n appeared in the Address table prior to
the access. Hence this �meta query� returns the set of access
paths which have no entries revealed in relation Mobile# un-
til an access AC is performed, where AC has method AcM1

and uses a name that already exists in the Address table.
In this work we will not be interested in returning all paths
satisfying a query (there are generally in�nitely many). We
will check whether there is a path satisfying a given spec-
i�cation. This is a question of satis�ability for our path
query language. We may also want to check that every path
through the system is of a certain form; this is the validity
problem for the language � bounds for validity will follow
from our results on satis�ability.
We call the logic containing the above sentence AccLTL(FO∃+Acc),

where FO∃+Acc is the collection of positive existential queries
over a signature consisting of: the access methods, bind-
ings, and the pre- and post- access version of each relation
used in a transition. AccLTL(FO∃+Acc) can express a wide
variety of properties. Unfortunately we show that satis�a-
bility for the logic is undecidable. However, we show that
a rich sublanguage of AccLTL(FO∃+Acc), denoted AccLTL+,
has a decidable satis�ability problem. In AccLTL+ the for-
mulas involving the bindings only occur positively. We give
bounds on the complexity of this fragment, using a novel
technique of reduction to containment problems for Datalog.
We then look at the exact complexity of smaller language
fragments, and show that the complexity can go much lower
� e.g. within the polynomial hierarchy. The main thing we
give up in these languages is the ability to express data�ow
restrictions. We also study the complexity and expressive-
ness of extensions of the languages with inequalities and
with branching time operators. In summary, our contribu-
tions are:

• We present the �rst query language for reasoning about
the possible paths of accesses and responses that may
appear in a Web form or other limited-access data-
source.
• We show that combining a natural decidable logic for
temporal data (LTL) with conjunctive queries gives an
undecidable path query language.
• We show that by restricting to �binding positive� queries,
we get a decidable path query language. In the process
we introduce a new automaton model that corresponds
to a process repeatedly querying a Web data source.
We show that analysis of these �access automata� can
be performed via reduction to (decidable) Datalog con-
tainment problems. The automaton and logic speci�-
cation languages are powerful enough to express a rich
set of data integrity constraints, access order restric-
tions, and data �ow restrictions.
• We show that the complexity of the logic can be de-
creased drastically by restricting the ability to express
properties of the bindings that occur in accesses. The
resulting language can still express important access
order and data integrity restrictions, although not data�ow
restrictions.
• We determine the impact adding inequalities to the re-
lational query language, and of adding branching op-
erators, both in terms of expressing critical properties
of accesses and on complexity of veri�cation.

Organization: Section 2 gives the basic de�nitions re-
lated to access patterns, along with our family of languages
AccLTL(L). Section 3 gives our results about the full lan-
guage AccLTL(FO∃+Acc) while Section 4 deals with AccLTL+

and its restrictions. Section 5 discusses extensions of AccLTL+.
Section 6 gives conclusions and overviews related work.

2. DEFINITIONS

Schemas and paths through a schema. Let Types be
some �xed set of datatypes, including at least the integers
and booleans. Our schemas extend traditional relational
schemas under the �unnamed perspective� [1]. A schema
Sch includes a set of relations {S1 . . . Sn}, with each Si as-
sociated with a function from {1 . . . ni}, where ni is the arity
of Si, to Types. We refer to the set {1 . . . ni} as the positions
of Si and the output of the function as the domain of the jth

position. An instance I for the schema consists of a �nite
collection I(Si) of tuples for each relation Si, where a tuple
is a function from the positions of Si to the corresponding
domain.
A schema will also have a collection of access methods,

where each method AcM is associated with a relation Si
and a collection of input positions Inp(AcM). Informally,
each access method allows one to input a tuple of values for
Inp(AcM) and get as a result a set of matching tuples.
An access consists of an access method and a binding � a

mapping taking the input positions of the method to their
domains. A boolean access is one where the access method
has as inputs every position of the relation � it is thus a mem-
bership test. We will use an intuitive notation for accesses,
often omitting the access method. Mobile#(�Jones�, ?, ?, ?)
is an access to relation Mobile# asking for all phone num-
ber information for people named �Jones�. An example of a
boolean access is Mobile#(�Jones�, �OX13QD� , �Parks Rd�, 23)?,
where we add the ? to make clear it is an access.

Given an access (AcM, b̄), a well-formed output for AcM
(on instance I) is any set of tuples r in I in the relation of
AcM that is compatible with b̄ on the input positions. We
also refer to this as a well-formed response.
A sequence ((AcM1, b̄1), r1), . . . , ((AcMn, b̄n), rn) of accesses

and well-formed responses for some instance I is an access
path for the instance I. We also refer to any sequence of
accesses and responses as an access path (without reference
to any instance). Note that every such sequence is an ac-
cess path for some instance � the instance containing all
returned tuples. Given an access path p and an initial in-
stance I0 the con�guration returned by p on I0, Conf(p, I0) is
the instance where relation Si contains I0(Si) unioned with
all tuples returned by any access to Si in p. When I0 is
empty or understood from context we refer to the instance
resulting from p, or Conf(p).
As mentioned in the introduction, one is not interested in

arbitrary paths, but those satisfying additional �sanity prop-
erties�. We allow our schemas to prescribe some common
additional properties of access methods, while additional re-
strictions can be expressed in the logics. The weakest prop-
erty we consider here is called idempotence: an access path
is idempotent if whenever the path repeats the same access,
it obtains the same results. This corresponds to the require-
ment that accesses are deterministic. A stronger property
is that accesses are exact: an access path is exact on an
instance I if for every access (AcM, b̄), the corresponding re-
sponse R contains exactly the tuples in the relation of AcM
which agree with b̄ on the input positions. An access path is
exact if it is exact for some input instance. Put another way,
an exact access path is one that contains sound and com-
plete views of the input data for all accesses made. Most
web sources are not expected to be exact � an online music
site will generally not contain information about all online
music. However, some forms may be known to have canon-
ical information � e.g. a web form accessing data from a
trusted government agency. We allow situations which mix
exact and non-exact accesses. In general, a schema may say
that some access methods are exact, some are idempotent,
and some are neither. Given a set of access methods S, we
say that an access path is S-exact if there is an instance I
such that the path is exact for all accesses with methods in
S, and similarly talk about S-idempotence.
Finally, we often do not want paths in which values for

access method inputs are �guessed�, but are only interested
in paths where the input to an access method is a value
already known. Given an instance I0 (representing the �ini-
tially known information�) an access path p = a1, r1 . . . is
grounded in I0 if every value in a binding ai occurs either in
I0 or in a response from some aj with j < i. Groundedness
is a special kind of data�ow restriction � our largest logics
will be able to specify groundedness, along with more spe-
cialized data�ow restrictions, but we allow them also to be
imposed in the schema.
A labelled transition system (LTS) is of the from (No,L,T)

where No is a collection of nodes, L is a collection of edge
labels, and T is a collection of transitions � elements of
No×L×No. With any schema and initial instance I0 we can
associate a labelled transition system where the nodes are all
the instances containing I0 as a subinstance, the labels are
all the accesses, and there is a transition (I,AC, I′) whenever
there is some response r to AC such that Conf((AC, r), I) =
I′. We can also consider the restricted LTS where we only

allow paths with transitions (I,AC, I′) in which the access
AC is grounded at I, only paths that are idempotent, or
only paths that are exact for a given subset of the access
methods.

Logics for querying access paths. To query paths it is
natural to use Linear Temporal Logic (LTL) [15]. LTL for-
mulas de�ne positions within a path. In Propositional LTL,
the positions within paths are associated with a proposi-
tional model over some set of propositions, and one can then
build up formulas from the propositions using the modal op-
erators, S (since) , U (until), X−1 (previously), X (next), and
F (eventually). For example F(Q ∧ XP) holds on positions
i in a path p that come before some position j such that
proposition Q holds at j and proposition P holds on position
j + 1. We want to extend LTL to deal with access paths,
which are not just a sequence of propositional structures.
Each position in an access path consists of an access and its
response; the corresponding path through the LTS de�ned
above consists of transitions t1 . . . tn, where a transition ti is
of the form (Ii, (AcMi, b̄i), Ii+1). There is obviously a one-
to-one correspondence between access paths and LTS paths
as above, and we will often identify them. Since the posi-
tions carry with them a relational structure, we will use a
variant of First Order Linear Temporal Logic (FOLTL) [15],
which allows the use of �rst-order quanti�ers and variables
along with modal ones. We will deal here with a variant of
FOLTL in which �rst-order sentences describing properties
of positions can be nested inside temporal operators, but
not vice versa.
The embedded FO formulas have the ability to constrain

the instance before the access as well as afterwards. Hence,
for a given vocabulary Sch, we will consider formulas over
the relational vocabulary SchAcc consisting of two copies
Rpre, Rpost of each schema relation R ∈ Sch. In addition
SchAcc contains predicates IsBindAcM for each access method
AcM in Sch. The arity of IsBindAcM is the number of in-
put positions of AcM. An LTS path t1 . . . tn is associated
with a sequence of SchAcc structures, where the i

th structure
M(ti), corresponding to ti = (Ii, (AcMi, b̄i), Ii+1) interprets
each predicate Rpre using the interpretation of R in Ii, each
predicate Rpost as the interpretation of R in Ii+1. The pred-
icate IsBindAcMi holds of exactly the tuple b̄i while all other
predicates IsBindAcM are empty.
We now introduce our main speci�cation formalism, AccLTL

(�Access Linear Temporal Logic�).

Definition 2.1. Let L be a subset of �rst-order logic over
SchAcc. The logic AccLTL(L) has as atomic formulas every
sentence of L, and is built up by the usual LTL constructors:

¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | ϕU ϕ

The semantics of AccLTL(L) is given by the relation (p, i) |=
ϕ, where p = t1 . . . tn is an LTS path and i ≤ n. It com-
bines the standard semantics of L formulas with the usual
rules for the constructors of LTL: 1. (p, i) |= ϕ i� ϕ ∈ L
and M(ti) satis�es ϕ in the usual sense of �rst-order logic.
2. (p, i) |= ¬ϕ i� (p, i) 2 ϕ. 3. (p, i) |= Xϕ i� (p, i+ 1) |= ϕ.
4. (p, i) |= ϕU ψ i� there exists j ≥ i (p, j) |= ψ and
∀i ≤ k < j, (p, i) |= ϕ. 5. (p, i) |= ϕ ∨ ψ i� (p, i) |= ϕ or
(p, i) |= ψ.
In the rest of the paper, we make use of the temporal

operators G (�globally�) and F (�eventually�). These op-
erators can be expressed using X and U as usual in LTL.

The language of a formula ϕ is the set of paths p such that
(p, 1) |= ϕ.
Our main language of interest is AccLTL(FO∃+Acc), where

FO∃+Acc consists of all positive existential FO sentences over
the signature SchAcc.

Example 2.2 [3, 5] study query containment under (in our
terminology, grounded) access patterns. Query Q1 is con-
tained in Q2 relative to a schema with access patterns means
that for every grounded access path p, if the con�guration
resulting from p satis�es Q1, then it also satis�es Q2. In-
formally, the facts about Q1 that we can determine given
the schema restrictions are contained in the facts we can
determine about Q2. Using a containment algorithm, one
can perform query minimization in the presence of access
restrictions.
In [5] containment under access restrictions is shown to

be decidable for conjunctive queries, while [3] studies the
complexity of the problem. One can see that Q1 is con-
tained in Q2 under grounded access patterns i� the following
AccLTL(FO∃+Acc) formula is a validity (over grounded paths):

G¬
`
Qpre

1 ∧ ¬Qpre
2

´
Here Qpre

i is obtained from Qi by replacing each schema
predicate S by Spre (one could as easily use Spost). We will
show that containment under grounded access patterns can
be expressed in a restricted fragment of AccLTL(FO∃+Acc),
as well as in an automaton-based speci�cation formalism
where validity relative to grounded access paths is decidable
in 2EXPTIME. Our results will thus give tight bounds for
containment under grounded access patterns.

Example 2.3 A boolean access AC1 is said to be long term
relevant [3] (LTR) for a query Q on an initial instance I0 if
there is an access path p = AC1, r1 AC2, r2 . . . such that
the con�guration I resulting from applying p to I0 satis�es
Q, and the con�guration resulting from the path with AC1

dropped (i.e. AC2, r2 . . .) leads to a con�guration where Q
does not hold. In the terminology of [3] we say it is LTR
under grounded accesses if there is a grounded access path
satisfying the above.
We claim that this property can be expressed in AccLTL(FO∃+Acc)

in the following sense: for each I0,AC1 = (AcM1, b̄1), and
Q there is an AccLTL(FO∃+Acc) formula ϕ which is satis�able
i� AC1 is LTR. Below we give the formula for I0 being the
empty instance:

F
`
¬Qpre ∧ IsBindAcM1(b̄1) ∧Qpost

´
The formula checks that there is a path p and a response r1

to AC1, such that Q holds after p but not after p,AC1, r1.
But for a boolean access AC1, the instance after p,AC1, r1

is the same as the one after AC1, r1, p.
As mentioned in the introduction, we often want addi-

tional data integrity restrictions on the path. In AccLTL(FO∃+Acc),
we can add on many data integrity restrictions, such as the
disjointness of names from streets, which would be expressed
by a conjunction of several formulas, including:

G(¬∃n∃p ∃s∃ph ∃hn∃n′ ∃pc Mobile#pre(n, p, s, ph)

∧ Addresspre(n, pc, n
′, hn))

Similarly we can add on access order restrictions and data�ow
restrictions. For example, the following would restrict to

paths in which names input to Mobile# must have appeared
previously in Address:

G((∃n IsBindAcM1(n))→
∃n∃s∃hn∃pc IsBindAcM1(n) ∧Addresspre(s, pc, n, hn))

Example 2.4 (Data integrity restrictions, continued) Let
Sch be a schema that includes, in addition to the access
methods, a collection of functional dependencies di = Ri :
posi → ai, where posi are positions of R

i and ai is a position
of Ri. We say that an access AcM is Long-term relevant for
Q under Sch if there is an instance I ⊇ I0 satisfying all the
FDs and an access path that reveals Q to be true, as in
Example 2.3, but where each response returns only tuples
in I.
This can be expressed in AccLTL(L6=∃), where L6=∃ is the

set of conjunctive queries with inequalities.

F
`
¬Qpre ∧ IsBindAcM(b̄1) ∧Qpost

´
∧^

i

¬F[∃~y ~y′ Ripre(~y) ∧Ripre(~y′)∧^
k∈ posi

yk = y′k ∧ yai 6= y′ai
]

where Qpre and Qpost are de�ned as in the previous example.
We will look at languages with inequalities in Section 5.

Basic Computational Problems. The basic problem we
consider is satis�ability of a sentence ϕ, which by default
means that there is some access path p such that (p, 1) |= ϕ.
We will also consider satis�ability over grounded, idempo-
tent, and (S-) exact paths.

3. AN EXPRESSIVE LANGUAGE FOR AC-
CESS RESTRICTIONS

Since satis�ability for �rst-order logic is undecidable, it
is clear that AccLTL(FO) has an undecidable satis�ability
problem. Our �rst main result is that the same holds even
when �rst-order formulas are restricted to be existential.

Theorem 3.1. The satis�ability problem for AccLTL(FO∃+Acc)
is undecidable

This is surprising, in that AccLTL(FO∃+Acc) formulas deal
with a �xed set of existential sentences on the con�guration,
and as a path progresses these queries can only move from
false to true as more tuples are exposed by accesses.
The proof works by reducing the problem of determin-

ing whether a collection Γ of functional dependencies (fds)
and inclusion dependencies (ids) implies another functional
dependency σ. Since this problem is known to be unde-
cidable [6], it su�ces to reduce it to unsatis�ability of a
AccLTL(FO∃+Acc) formula.
The di�culty here is that functional dependencies seem

to require negation inside a universal quanti�cation, while
inclusion dependencies require quanti�er alternation � in
AccLTL(FO∃+Acc) we have only boolean combinations of pos-
itive formula. We now explain the main idea involved in
bridging this gap, which will also be used in later unde-
cidability arguments (Theorem 5.2). The schema for our
accesses includes a successor relation of a total order over
the tuples of each relation in Γ ∪ {σ}. The successor rela-
tion is �created� via accesses � that is, we perform accesses

that reveal associations between a tuple and its successor.
For each relation R mentioned in Γ ∪ {σ} we also have re-
lations Beg(R) and End(R). Our formula will enforce that
that these contain the �rst and the last tuples in the total
order, respectively, by asserting the existence of additional
accesses to these relations that reveal the �rst and last tu-
ple. After all the relations are �lled, the satisfaction of the
di�erent fd's and id's in Γ and the failure of σ are veri�ed.
The satisfaction of the dependencies makes use of the suc-
cessor relation, and we explain the idea for FDs. We verify
a dependency for one tuple at a time, iterating on the tu-
ples according to the order. We will use a new predicate
ChkFD(R) whose arity is twice the arity of R. This predi-
cate will have a boolean access. ChkFD(R)(~t,~t′) holding at
some instance indicates that ~t,~t′ is in accordance with the
FDs on R. This will be done in a �nested loop� (a pair of
nested �untils� in the logic) in which we iterate �rst over
tuples ~t, then over tuples ~t′, accessing them progressively
within ChkFD(R). At every access, we check whether the
FD is satis�ed, and if it is we continue the iteration. Details
are in the appendix.

4. VERIFIABLE SPECIFICATIONS: THE POS-
ITIVE TRANSITION SUBLANGUAGE

The undecidability proof of AccLTL(FO∃+Acc) makes use of
the ability of the logic to enforce that an access is made to a
binding that does not satisfy a certain relation. We now con-
sider a restriction of AccLTL(FO∃+Acc) which adds an addi-

tional monotonicity condition. A formula ϕ in AccLTL(FO∃+Acc)
is binding-positive if every atom of the form IsBind(~w) oc-
curs only positively in ϕ � that is, under an even number of
negations.

Definition 4.1. The logic AccLTL+ is the set of binding-
positive formulas in AccLTL(FO∃+Acc).

Note that in AccLTL+ we can describe the most basic
data�ow constraint, the property of an access path being
grounded: an access is grounded i� for every transition in a
path, for every value that occurs in a binding, it occurs in
some relation in the instance prior to the access:

G

“
∃~x IsBindAcM(x1 . . . xm) ∧^
i≤m

_
R∈ Sch

∃~y R(y1 . . . yn) ∧
_
j≤n

yj = xi
”

Thus we can reduce satis�ability over grounded instances to
satis�ability over all instances. Furthermore all the exam-
ples in the introduction are expressible in this fragment; we
can express relevance of an access to a query as well as con-
tainment of queries under access patterns, restricting the
paths to satisfy many data integrity, data�ow, and access
ordering restrictions.

Our next main result is that this restriction su�ces to give
decidability:

Theorem 4.2. Satis�ability of AccLTL+ is decidable in
3EXPTIME. The same is true for satis�ability over grounded
instances and satis�ability over idempotent and exact ac-
cesses.

We will show Theorem 4.2 by going through another spec-
i�cation formalism of interest in its own right, a natural au-
tomaton model for access paths. These are Access-automata

(A-automata for short), which run over access paths, using a
�nite set of control states. At each transition (I, (AcM, b̄), I′)
of an access path the evolution function of the automaton
tells what new states (if any) it can move to at the next
position. The evolution function is a relational query that
makes use of the binding, pre- and post- condition of the
transition.

Definition 4.3 (A-Automaton). Let Sch be a schema,
SchAcc the corresponding schema with accesses (as de�ned in
Section 2), and C a set of constants. An Access-automaton
(A-automaton for short) over (Sch, C) is a tuple (S, s0, F, δ)
where
• S is a �nite set of states, s0 ∈ S is an initial state,
F ⊆ S is a set of accepting states
• δ is a �nite set of tuples of the form (s, ψ− ∧ ψ+, s′)
where s, s′ are states, ψ− is a positive boolean combina-
tion of negated FO∃+Acc sentences that can not mention

the predicate IsBind, while ψ+ is a FO∃+Acc sentence; all
these formulas can use constants in the given set C.

Semantics. Let A = (S, s0, F, δ) be an A-automaton and
let p be a path t1 . . . tn through the LTS associated with Sch,
where ti = (Ii, (AcMi, b̄i), Ii+1). A run of A on p assigns
to every ti a δi of the form (si, ϕi, si+1) in δ so that the
relational structure M(ti) associated with ti satis�es ϕi. A
run of A is further said to be accepting i� its �rst state is
initial and its last state is �nal. The language L(A) accepted
by an A-automaton A is the set of access paths for which
there is an accepting run. Note that an automaton only
accepts access paths, which by de�nition must satisfy at
least the property that for each i, Ii+1 extends Ii solely by
adding tuples to the relation of AcMi, and all tuples added
are consistent with the binding on the input positions of
AcMi. The de�nition of L(A) can be further quali�ed to
account for other sanity conditions (e.g. exactness).

A-automata are powerful enough to directly express rele-
vance of an access in the presence of data�ow restrictions as
well as disjointness constraints. In particular, the following
is easy to show (and is proven in the appendix):

Proposition 4.4. Let Q and Q′ be two positive queries,
ACS a set of access methods, and Σ a set of disjointness
constraints. One can e�ciently produce an A-automaton A
such that Q is contained in Q′ under limited access patterns
with disjointness constraints i� the language recognized by A
is empty. A similar statement holds for long-term relevance
of an access to Q under disjointness constraints.

The proposition above can be extended to a general result
stating that high-level logical speci�cations can be compiled
into A-automata. We say that an A-automaton A is equiv-
alent to an AccLTL sentence ϕ if the language of the ϕ is
the same as the language of A. The following result shows
that each AccLTL+ formula can be converted into an A-
automaton.

Lemma 4.5. For each AccLTL+ formula ϕ there is an
equivalent A-automaton of size exponential in the size of ϕ.

We will show that emptiness of A-automata is decidable.
Note that this decidability result together with Lemma 4.5
completes the proof of Theorem 4.2. Again, there are vari-
ants of the theorem for the various types of access, but we

focus on the case of general accesses in the body of the pa-
per.

Theorem 4.6. Emptiness of A-automata is decidable in
2EXPTIME. The same holds if accesses are restricted to be
exact or idempotent.

Notice that from Theorem 4.6 and Proposition 4.4 we get
a 2EXPTIME upper bound for containment and long-term
relevance. This improves on the prior known bounds [3, 5].
The proof uses a tight connection between A-automata

and the containment problem for Datalog queries within
positive �rst-order queries. This connection can also be ex-
ploited to give a corresponding lower bound:

Theorem 4.7. Emptiness of A-automata and satis�abil-
ity of AccLTL+ are both 2EXPTIME-hard.

4.1 Automata, Datalog, and proof sketch of
Theorem 4.7

The proof of this result makes use of some new tools that
we overview here. We reduce the emptiness problem for
A-automata to the problem of whether a Datalog program
is contained within a positive �rst-order query. Roughly
speaking, we show that these automata can be captured
by a conjunction of a Datalog query and the negation of a
union of conjunctive queries. The reduction to this prob-
lem involves several stages, and the �rst step goes through
a syntactic subclass of A-automata, called �progressive A-
automata�, de�ned below. We will show that the problem of
testing emptiness of A-automata can be reduced to check-
ing the emptiness of a bounded number of progressive A-
automata.

Progressive Automata. In the following, given a boolean
combination of FO∃+Acc formulas ϕ, we denote by ϕ̃ the for-
mula ∃x̄ ϕ′ where ϕ′ is obtained from ϕ by replacing each
atom IsBindAcM(t̄) by t̄ = x̄ and by replacing each predicate
Rpre by Rpost. For a set Φ of sentences, we say that a for-
mula is a complete Φ-type if it is a conjunction that contains
every formula of Φ either positively or negated. A formula is
a �pure pre� (resp. �pure post�) formula if it only mentions
predicates of the form Rpre (resp. Rpost).

Definition 4.8 (Progressive A-automaton). An A-
automaton A = (S, s0, F, δ) over (Sch, C) is progressive if
there is a pure pre formula Υpre(s0) that does not use the
predicate IsBindAcM, a set of pure post FO∃+Acc sentences Φ,
and a function Υpost mapping the states of A to complete
Φ-types such that:

1. For any transition (s, ϕ, s′), if both IsBindAcM(t̄) and
IsBindAcM′(t̄

′) are atoms in ϕ, then AcM = AcM′.
2. For any transition (s, ϕ, s′), ϕ implies Υpost(s

′).
3. For any transition (s0, ϕ, s

′) that leaves the initial state,
ϕ implies Υpre(s0)

4. For any transition (s, ϕ, s′) for which s and s′ are in
the same strongly connected component, Υpost(s) is
equivalent to Υpost(s

′); also Υpost(s
′) implies ϕ̃.

5. The maximal strongly connected components of A form
a sequence C1, . . . , Ch. That is, for each i < h, there
is exactly one transition (s, ϕ, s′) such that s ∈ Ci and
s′ ∈ Ci+1. For such a transition that connects two
maximal strongly connected components, all atoms of
the form IsBindAcM(t̄) must not contain variables; that
is, t̄ must be a sequence of constants.

6. The initial state is in C1 and all accepting states are
in Ch.

We will call h the height of A. The following lemma,
proven in the appendix, shows that A-automata correspond,
up to emptiness, to unions of progressive automata.

Lemma 4.9. For every A-automaton A, there are pro-
gressive A-automata A1, . . . , An, such that, for each i ≤ n,
the size of Ai is polynomial in the size of A, n is exponential
in the size of A, and L(A) is empty i� L(A1) ∪ . . . ∪ L(An)
is empty.

From progressive A-automata to containment of Dat-

alog in Positive Queries. We now proceed to show that
emptiness of progressive A-automata is decidable. Together
with Lemma 4.9 this implies the decidability of (general) A-
automata. This will involve reducing the emptiness of a pro-
gressive A-automaton to the problem of whether a Datalog
program is contained in a positive �rst order logic sentence.
Recall that a Datalog program is de�ned with respect to

two database schemas, called the extensional schema and
the intensional schema. A Datalog program P is a �nite
set of rules of the form �head : − body� where head is
an atomic formula R(x̄) with a relation symbol R in the
intensional schema, and where body is a conjunctive query
that can use relation symbols from the intensional and the
extensional schema. Each Datalog program P contains a
distinguished goal predicate Q. We use the standard notions
of the least �xedpoint of a Datalog program P on a database
D (see [1]), and we denote this �xedpoint by P(D). We say
that a Datalog program P accepts a database D if the goal
predicate of P is not empty in P(D).

Lemma 4.10. Let A be a progressive A-automaton. Then
there exists a Datalog program PA and a positive �rst order
logic sentence P′A such that L(A) is not empty i� PA is not
contained in P′A. One can construct these in polynomial
time in the size of A.

The proof of this lemma is itself quite involved. The basic
idea of this proof is that PA enforces the positive constraints
of A while P′A enforces the negative constraints. Recall that
in a progressive automaton, the evolution is in a �xed num-
ber of stages, based on the number of subqueries satis�ed. A
stage represents a strongly connected component of the au-
tomaton. The extensional database D will have predicates
BackgroundRi representing the part of relation R that be-
comes visible to A at the end of each stage i, along with
predicates IntBackgroundRi representing the data that be-
comes visible when crossing from one stage to the next. The
important intensional predicates ViewRi will represent in-
termediate stages of the predicates BackgroundRi within the
evolution of each stage. The Datalog program PA will have
rules corresponding to the evolution of ViewRi by adding
tuples from BackgroundRi. To ensure that the tuples corre-
spond to some valid binding, PA will have rules guaranteeing
that only tuples that satisfy the appropriate formulas can be
added to ViewRi. We can do this with a Datalog program
by adding appropriate intermediate relations, exploiting the
fact that the constraints on the guards are positive, and
hence represented in non-recursive Datalog.
The role of the positive query P′A is twofold: First, P′A

will enforce the negated conjunctive queries in the tran-
sitions � in particular, P′A will contain constraints on the

relations BackgroundRi and IntBackgroundRi that enforce
that these only contain tuples that satisfy these negated con-
straints. In this way, whenever the Datalog program adds
tuples to the intensional relations, these tuples are guaran-
teed to satisfy the corresponding negative constraints. The
second purpose of P′A is to enforce that for each i, only one
relation among the IntBackgroundRi is non-empty. This
is important, as these relations contain the tuples that the
Datalog program might add when simulating the automaton
transitioning from one strongly connected component to the
next. On such a transition an A-automaton can only per-
form one access, and hence the Datalog program should only
be able to add tuples from one relation IntBackgroundRi

into ViewRi.
In the proof that our construction is correct, we show

that our Datalog program PA can be decomposed into sub-
programs P1, . . . ,Ph that correspond to the decomposition
of the A-automaton into strongly connected components
C1, . . . , Ch, in the following sense: Whenever an A-automaton
has a run that ends in its strongly connected component Ci,
i ≤ h then the subprogram P1 ∪ . . .∪Pi of P adds tuples to
the intensional database that correspond in a certain way to
the tuples that A has obtained using accesses.
The details of the construction, and a proof of its correct-

ness, are in the appendix.

Completion of the proof of Theorem 4.6. Let us review
what we have accomplished thus far: we have reduced ques-
tions about our logic to non-emptiness of the automata, and
non-emptiness of an automaton we have reduced to deter-
mining whether a Datalog program is contained in a positive
query. To complete the proof of Theorem 4.6 we need the
following new result, that generalizes a theorem of Chaud-
huri and Vardi [7]:

Proposition 4.11. The containment problem of a Dat-
alog program P in a positive �rst-order sentence ϕ, where
both P and ϕ may make use of constants, is in 2EXPTIME.

The proof of this result is in the appendix. Theorem 4.6
follows from the proposition and the reduction given earlier.

4.2 Restricted binding predicates and reduc-
tion to propositional LTL

We now look for path query languages where the satis-
�ability problem has lower complexity. We will do this by
giving up the ability to talk about the exact data�ow from
data instances to bindings. This will allow us to get veri-
�cation algorithms based on reduction to standard Propo-
sitional Linear Temporal Logic veri�cation, a well-studied
problem for which many tools are available [9].
For a relational schema Sch, we de�ne the vocabulary

Sch0−Acc as in SchAcc but instead of n-ary predicates IsBindAcM,
we have only a 0-ary predicate IsBindAcM. A transition
ti = (Ii, (AcMi, b̄), Ii+1) is now associated with the rela-
tional structure M ′(ti) in which Spre, Spost are interpreted
as before, and IsBindAcM() holds exactly if AcM = AcMi.
We will now consider AccLTL(FO∃+0−Acc), in which the �rst-
order formulas use only Sch0−Acc. That is, in the logic we
can refer to which access was performed, but can not express
anything about the bindings used.
Going back to Example 2.2 and 2.3 we say that the ba-

sic relevance properties are in this language, provided that
we do not impose any data�ow restrictions � including any
restrictions that access paths are grounded. On the other

hand, we can still impose the access order restrictions of Ex-
ample 2.3. We now see that by curtailing the expressiveness,
the complexity goes down signi�cantly.

Theorem 4.12. Satis�ability of an AccLTL(FO∃+0−Acc) for-
mula (over all access paths) is PSPACE-complete. The
same holds if particular access methods must be exact or
idempotent.

Proof. The PSPACE-hardness of our problem comes
from the PSPACE-hardness of the satis�ability problem of
a LTL formula over �nite words [15]. The upper bound is
proven by bounding the size of the underlying data, and
then applying results about propositional LTL.
We now prove the upper bound, focusing on the case of

general access paths. Let Sch be a schema, and ϕ be a for-
mula of AccLTL(FO∃+0−Acc). First, we demonstrate that if
there exists an access path that satis�es ϕ then there exists
one where the size of each instance is bounded by a polyno-
mial function in the sizes of ϕ and Sch.
The key is the following �Boundedness Lemma�:

Lemma 4.13. An AccLTL(FO∃+0−Acc) formula ϕ is satis-
�able i� there exists a path ρ which satis�es the following
properties: 1. The instances in ρ have sizes bounded by a
polynomial function in the sizes of ϕ, and Sch. 2. The set of
bindings used in ρ has size bounded by a polynomial function
in the sizes of ϕ

Proof. Let some ϕ be given. Suppose that ϕ is sat-
is�able. Then there exists a path ρ that satis�es ϕ. We
de�ne the positive sentences of ϕ to be the maximal sub-
sentences of ϕ that belong to FO∃+0−Acc. Consider the fol-
lowing rewrite rules: for each AcM ∈ Sch we replace the
formula IsBindAcM ∧ψ, where IsBindAcM is a predicate, by
the formula ψ. We also replace the formula IsBindAcM ∨ψ
where IsBindAcM is a predicate by the formula ψ. We de-
note by Qf (ϕ) the set of FO∃+0−Acc sentences that have been
obtained from a positive sentence of ϕ by inductively apply-
ing the above rules until there are no more occurrences of
predicates IsBindAcM in the result.
Let {q1, . . . , qm} be the set of sentences appearing inQf (ϕ)

that are satis�ed by the last instance In. Let ρi1 , . . . , ρim
be the set of transitions in the path ρ such that ρij is the
minimal transition in ρ that satis�es qj . Let hj be a ho-
momorphism from qj to ρij . We let (If−1,ACf , If) be the
last transition in ρ. Let I′f be the minimal subinstance of If
such that for all i hi(qi) ⊆ (I′f)pre ∪ (I′f)post), where for any
instance I of the original schema, Ipre is obtained from I by
interpreting relations Rpre by the interpretation of R in I,
while Ipost is obtained from I by interpreting relations Rpost

by the interpretation of R in I.
Since we only need to consider witnesses to positive queries,

it is easy to check that I′f can be constructed and has size
polynomial in the sizes of ϕ and Sch. We can thus construct
a path ρ′ that contains the intersection of the instances of
ρ with the instance I′. ρ′ satis�es ϕ, and the size of the
instances of ρ′ are bounded by a polynomial function in the
size of ϕ and Sch.
We now restrict the bindings used in ρ′. Let p be a path.

An access (AcMi, b̄i) is necessary for p if new tuples are
returned by it (i.e. tuples not in the previous instance within
p), and unnecessary otherwise. Note that if we have a path
and we change the binding on some unnecessary access to

anything of the appropriate arity, while returning emptyset,
then it is still a valid access path.
So without loss of generality, we can arrange that the set

of bindings used in ρ′ consists of the necessary accesses in ρ′

plus a single binding for each access method, used in place
of every unnecessary access on that method. Therefore the
set of bindings is a set of tuples having size bounded by a
polynomial function in the sizes of ϕ and the schema.

Given the lemma, we can now apply the followingNPSPACE
algorithm:

1. First, we guess a �nite sequence of instances I1 . . . In
and a sequence of accesses A, each of polynomial size
(with the polynomial given by Lemma 4.13). In the
remaining steps, we will check whether there is a wit-
ness path using the bindings of these accesses and only
these instances.

2. We translate the AccLTL(FO∃+0−Acc) formula ϕ into
an ordinary LTL formula ϕ in a propositional alpha-
bet that encodes information about which of the in-
stances and bindings are used. This formula will be
constructed so that it is satis�able over words i� ϕ is
satis�able.

3. Then, we apply any PSPACE algorithm for LTL sat-
is�ability of ϕ over �nite words.

We now explain in more detail the translation to ordinary
LTL that is the key step in the high-level algorithm above.
Fix a sequence s = I1 . . . In of distinct instances as well as a
sequence of accesses A, both of polynomial size. We denote
by B, the union of the set of bindings used in A and the set
∪AcM{bAcM} where bAcM is a binding of AcM using some
values appearing in B.
We associate propositions with transitions of any of the

following forms:

• Transitions of form (Ii, (AcM,~b), Ii) where ~b is in B
and compatible with AcM.

• Transitions of form (Ii, Ai, Ii+1)

The set of transitions of the above forms is denoted T (I, B).
For each i, we denote by T (i) the set of transitions of the

form (Ii, (AcM,~b), Ii). For each i, we denote by ti,→ the
transition (Ii, A(i), Ii+1). For each i, we denote by P (i)
the set of propositions associated with the transitions of

the form (Ii, (AcM,~b), Ii). For each i, we denote by pi,→
the proposition associated with the transition (Ii, Ai, Ii+1).
The set of all such propositions is denoted Σ. The words de-
scribed by ϕ are over alphabet 2Σ. Intuitively, each letter of
a word would be used to describe a transition (I, (AcM, b̄), I′).
We now describe the construction of ϕ.
First, we describe some �sanity axioms� stating that a run

associated with ϕ really corresponds to some access path.
This requires:
• Every position has exactly one proposition of Σ.
• The order of the instances in s is respected. This is
expressed by the formula:^

i,p∈P (i)

G

“
p⇒

` _
p′∈P (i)

p′ U pi,→
´”
∧

^
i

“
pi,→ ⇒ X

` _
p′′∈P (i+1)

p′′ ∨ pi+1,→
´”
∧

` _
p′′′∈P (0)

p′′′ ∨ p0,→
´

Next we rewrite ϕ to ϕ by replacing each positive sentence
q of ϕ by the union over of p ∈ Σ over all the previous
transitions that satisfy it.
We claim that the ϕ is satis�able over ordinary words i� ϕ

is satis�able over access paths that conform to the sequence
s and the bindings in B. The direction from right to left
requires taking an access path and performing the obvious
propositional abstraction. In the other direction, we take a
propositional word w1 . . . wn satisfying ϕ. The �rst sanity
axiom implies that exactly one transition proposition p is
associated with wi. The second sanity axiom implies that
the instance reached in the transition associated with w(i) is
the same as the initial instance of the transition associated
with w(i + 1). One can check that this gives the required
access path for ϕ.

Restricting LTL operators. Let LTLX be the subset of
LTL that only uses the temporal operator X. We denote
by AccLTL(X)(FO∃+0−Acc) the corresponding sublanguage of

AccLTL(FO∃+Acc).

AccLTL(X)(FO∃+0−Acc) is extremely limited in expressive-
ness, since it can only talk about paths of some �xed length.
However, there are properties for which such small paths are
su�cient. Consider Example 2.3. It is easy to see that Q is
LTR over all accesses i� it is LTR over access paths of size |Q|
� a counterexample to long-term relevance has only polyno-
mially length. But LTR over small paths can be expressed in
AccLTL(X)(FO∃+0−Acc). Thus AccLTL(X)(FO∃+0−Acc) is suf-
�cient to tell whether an access might have an impact on
answering a query, but without taking into account of even
the most basic data�ow restriction on paths.

Theorem 4.14. Satis�ability of AccLTL(X)(FO∃+0−Acc) is

ΣP2 -complete, even when certain accesses are restricted to be
exact or idempotent.

Hardness. The non-containment of positive relational queries,
where positions can be restricted to have �nite (i.e. enum)
datatypes can be reduced to the unsatis�ability problem of
either language � this problem is known to be ΠP

2 -hard.
Upper-Bound. Let an AccLTL(X)(FO∃+0−Acc) formula ϕ

be given. We �rst note that Lemma 4.13 also holds for the
logic AccLTL(X)(FO∃+0−Acc). Using this we can reduce to
the language propositional LTLX , which has a satis�abil-
ity problem in NP. In the reduction we will again guess a
small number of small instances and bindings, and we will
also guess which positive queries of ϕ will be true � this
guess will then be veri�ed via a sequence of NP (for queries
guessed to be true) and co-NP (for queries guessed to be
false) subroutines. We can then rewrite the original formula
ϕ to an LTLX formula that is satis�able i� ϕ is satis�able
on a sequence based on the guessed instances and bindings.
Details are in the appendix.

5. EXTENSIONS AND LIMITS
We look at the impact of two natural extensions on our

decidability results: allowing inequalities and branching for-
mulas.

5.1 Extension to Inequalities
Our results on decidable fragments did not use inequali-

ties, and inequalities are useful for expressing data integrity

constraints. The most obvious example involves keys and
functional dependencies, as discussed in Example 2.4.
By making a straightforward modi�cation of the proofs

without inequalities, we can see that inequalities add noth-
ing to the complexity of AccLTL(FO∃+0−Acc) and its sublan-
guages.

Theorem 5.1. Letting FO∃+,6=0−Acc be the language of posi-
tive queries with inequalities over the restricted vocabulary
with only the 0-ary predicates IsBindAcM, we have that
• satis�ability of AccLTL(FO∃+,6=0−Acc) is in pspace (and
hence pspace-complete by Theorem 4.12)

• satis�ability of AccLTL(X)(FO∃+,6=0−Acc) is in ΣP2 (hence

ΣP2 -complete by 4.14)

Using the language above, one can express relevance or
containment in the presence of functional dependencies, ac-
cess order constraints, and disjointness constraints, but not
data�ow constraints.
For the language AccLTL+, shown decidable in Theo-

rem 4.2, inequalities make a dramatic di�erence. The proof
of the theorem below shows that we cannot capture both
data�ow restrictions like groundedness along with rich in-
tegrity constraints such as functional dependencies, while
retaining decidability. The proof also shows that many ex-
tensions of AccLTL+ with aggregation � basically, any that
are expressive enough to capture FDs � will be undecidable.

Theorem 5.2. For binding-positive AccLTL(FO∃+, 6=Acc), sat-
is�ability is undecidable

Proof. Again we reduce the problem of implication of
functional dependencies (fds) and inclusion dependencies
(ids) for relational databases to the problem of the unsatis-
�ability of a AccLTL+ extended with inequalities.
Let Γ be a set of inclusion and functional dependencies,

and σ be a functional dependency over Sch.
The approach to the reduction is similar to that in The-

orem 3.1. We will make iterative accesses to a successor
relation of a total order over the tuples. We will also access
relations Beg(R) and End(R), and verify that they contain
the �rst and the last tuples of relation R according to the
order. While iterating through the relations according to
the successor relation, the satisfaction of the di�erent fd's
and id's and the failure of σ are veri�ed. The satisfaction
and failure of fd's can be reduced to the satisfaction of a
boolean combination of conjunctive queries with inequali-
ties � the successor relation is not needed. The satisfaction
of an inclusion dependency id whose source is a relation R is
where we use the successor relation, and the iteration tech-
nique of Theorem 3.1. Again, it is easy to check an inclusion
dependency for a source relation consisting of only a single
tuple, since this requires only existential quanti�cation. We
verify an id on source relation R by checking for witnesses
for one tuple in the source of the dependency at a time,
iterating on the tuples according to the successor relation.
We will use a new predicate CheckIncDep(id) whose arity is
the arity of R. CheckIncDep(id)(~t) holding at some instance
indicates that ~t has been veri�ed to satisfy the inclusion de-
pendency id. This will be done in a �loop� (an �until� in the
logic) in which we look for a tuple ~t whose predecessor in
the order satis�es CheckIncDep(id), and which satis�es the
inclusion dependency; when we �nd such a tuple, we per-
form an access to CheckIncDep(id) on it. At the end of this

�loop�, we check that the �nal tuple in the ordering satis�es
CheckIncDep(id). Details are in the appendix.

The reader may want to look at Figure 2 for a view to
how the languages with inequalities relate to the languages
de�ned previously.

5.2 Branching time formulas
Thus far we have discussed only linear time properties

of the LTS of a schema with access relations. What about
branching time logics, which can consider the relationship of
multiple paths? For example, a branching time logic could
express that we have reached a point where no further in-
formation about boolean query Q can be obtained without
guessing values to enter into forms � e.g. there are possible
worlds consistent with the known facts where Q is true and
also consistent worlds where Q is false, but the truth of Q
can not be revealed by any further sequence of grounded ac-
cesses. Unfortunately, we will show that even very limited
branching time expressiveness leads to undecidability.
Let L be a fragment of �rst-order logic over the smallest

vocabulary we have considered thus far: two copies Spre, Spost

of each relation symbol S and the proposition IsBindAcM.
We will consider a small fragment of branching time logic

built up from L-formulas, analogously to the way we built up
AccLTL formulas over sentences of L in the linear time logic.
Traditional branching time logic allows the combination of
path quanti�cation with modal operators. In our setting we
will consider a very simple kind of branching, which looks
ahead only one step � we will refer to it as CTLEX(L), but
instead of CTL we might as easily have said �basic modal
logic� or Hennessy-Milner Logic [15], since we only need the
power of the most basic existential modality to get unde-
cidability. CTLEX(L) has the rules: every L sentence is
a formula, boolean combinations of formulas are formulas,
and if ϕ is a formula then EXϕ (in modal logic notation, �ϕ)
is a formula.
The semantics is de�ned as a relation (S, t) |= ϕ, where t

is a transition (I,AC, I′) in the labelled transition system S
associated with a schema Sch. When ϕ is an L formula, this
holds i� the relational structure associated to t, M ′(t), sat-
is�es ϕ in the usual sense of �rst-order logic. The semantics
of boolean operators is the usual one. Finally, (S, t) |= EXϕ
i� there is a successor t′ of t such that (S, t′) |= ϕ. Note that
instead of referring to CTL here, we could have used basic
modal logic or Hennessy-Milner Logic. Note that Deutsch
et. al. [14] have shown undecidability for some branch-
ing time logics over LTS's associated with a similar model
of relational transducers � but in their case the logics (e.g.
Theorem 4.14 of [14]) allow one to describe properties of the
input (analogous to our larger signature SchAcc), while here
we can only describe the access propositionally.
We show that even this restricted logic is undecidable,

even when the base formulas are existential.

Theorem 5.3. Satis�ability of CTLEX(FO∃+0−Acc) formu-
las is undecidable

Proof. We reduce from the problem of implication of
a functional dependency (FD) from a set of functional de-
pendencies and inclusion dependencies (IDs) for relational
databases. This is known to be undecidable [6].
Let Γ be a set of inclusion and functional dependencies

over a relational schema Sch and σ an FD. For simplicity, we

will assume all positions in the schema have the same type
(say, integer type). We will �rst extend Sch with additional
relations, along with access patterns.
For each relation R of Sch, we have an access method

FillR on R with no inputs. Thus each access (FillR, ∅) re-
turns an essentially random con�guration ofR. We also have
additional relations ChkFD(R), having twice the arity of R
and CheckIncDep(R) having the same arity as R. We have
boolean access methods on all of these additional relations
� that is, methods where all positions are in the input.
Our reduction will create a formula ψ(Γ, σ) of the form:

EX

“
FillR1 ∧EX

`
· · · ∧ EX(FillRn

^
fd∈Γ

ϕfd ∧
^

id∈Γ

ϕid ∧ ϕ¬σ)
´”

where ϕfd, ϕid, and ϕ¬σ will be de�ned below, but we ex-
plain their mission now. For each functional dependency
fd ∈ Γ, the formula ϕfd will hold on a transition t = (I,AC, I′)
exactly when fd holds on the restriction of I′ to the schema
predicates from Sch, and similarly for ϕid. The formula ϕ¬σ
checks that I′ does not satisfy the functional dependency
σ. Thus this formula will imply that the con�guration is a
witness showing that Γ does not imply σ.
We now explain how the di�erent formulas are built. Let

fd = R : P → p where P are positions of relation R and p is
a position of R. The formula ϕfd will be:

AX

“
∃~x~y ChkFD(R)post(~x, ~y) ∧

^
i∈P

xi = yi ∧Rpost(~x) ∧Rpost(~y)

⇒ ∃~x′~y ChkFD(R)post(~x
′, ~y′) ∧ x′p = y′p

”
Here we use the derived �box� modality AXϕ = ¬EX¬ϕ.
Note that ϕfd occurs in formula ψ(Γ, σ) in a context where
we know that only accesses to Ri have been done � hence
only in contexts where ChkFD(R) must be empty. Since the
only access methods for the relations ChkFD(R) are boolean,
this means that after one transition we can have at most
one tuple in ChkFD(R)post(~x, ~y). Thus doing a modality AX
followed by a test that ChkFD(R)(~x, ~y)∧Rpost(~x)∧Rpost(~y)
holds amounts to testing an arbitrary pair ~x, ~y satisfying R
prior to the access. The formula thus asserts that for any
such pair of tuples in R, if they agree on all positions in the
source of the FD, they agree on the target of the FD.
We can use a similar trick with the formula ϕ¬σ:

EX

“
∃~x~y ChkFD(R)post(~x, ~y) ∧

^
i∈P

xi = yi ∧

Rpost(~x) ∧Rpost(~y)∧

¬∃~x′~y ChkFD(R)post(~x
′, ~y′) ∧ x′p = y′p

”
Now �x an id R[A1, · · · , An] ⊆ S[B1, · · · , Bn], and we de�ne
ϕid to be

AX

“
IsBindCheckIncDep(R) ∧Rpost(~x)∧

∃~x CheckIncDep(R)post(~x) =⇒
EX
`

IsBindCheckIncDep(S) ∧∃~x CheckIncDep(R)post(~x)∧

∃~yCheckIncDep(S)post(~y) ∧
^
i≤n

xAi = yBi

´”
This states that whenever we do a �test access� that returns
an element of R, there is some access we can do immediately
afterwards in the LTS that reveals a matching tuple in S. As

AccLTL(FO9+
0�Acc)

AccLTL(FO9+
Acc)

AccLTL+

A� automata

AccLTL(X)(FO9+6=
0�Acc)

AccLTL(FO9+6=
0�Acc)

Figure 2: Inclusions between language classes.

in the case of ϕfd above, the accesses we perform are boolean,
and hence cannot be creating any new elements of S � thus
the revealed match must have been in the con�guration prior
to the access.

6. CONCLUSIONS AND RELATED WORK
In this work we introduced the notion of querying the

access paths that are allowed by a schema. We presented
decidable speci�cation languages for doing this, and gave un-
decidability results showing several limits of such languages.
Figure 2 shows the inclusions of the languages considered
in the paper, excluding those for branching time. All of
the containments shown in the diagram are straightforward.
The containment of FO∃+0−Acc in AccLTL+ does require one

to deal with the fact that FO∃+0−Acc sentences are not re-
quired to be binding-positive. The inclusion follows by �rst
rewriting negated 0-ary IsBindAcM predicates using the rule
IsBindAcM =

W
AcM′ 6=AcM IsBindAcM′ , then replacing the 0-

ary predicate by existentially-quanti�ed n-ary predicates.
All the inclusions in the diagram also turn out to be strict.

We omit the proofs for this, which use standard techniques:
e.g. A-automata can express parity conditions on the length
of paths, which �rst-order languages like AccLTL+, or even
AccLTL(FO∃+Acc), can not do.
Table 1 shows the complexity of satis�ability for each

speci�cation formalism, along with application examples.
DjC indicates that the language can express relevance of
an access in the presence of disjointness constraints, while
FD,DF,AccOr refer to functional dependencies, data�ow
restrictions, and access order restrictions, respectively.
Our work leaves open a number of questions concerning

the logics we study � for example, we leave open the ex-
act complexity of AccLTL+, which lies between double- and
triple- exponential time. We also do not have tight bounds
for our more restricted fragments (e.g. with only the 0-ary
version of IsBindAcM) in the important case of grounded
access paths.
Although this is, to the best of our knowledge, the �rst

work on languages for describing access paths through a
schema with binding patterns, there is a strong formal con-
nection to work on verifying data-driven services, as well as
other work in the area of hidden Web querying. We review
the closest connections below.

Data-driven services. Our work is closely related to a line
of research on relational transducers and models for data-
driven services, beginning with Abiteboul et. al.'s [2], and
continuing through work of Spielmann [21], Deutsch, Su and
Vianu (e.g. [14]), Fritz et. al. [16], and Deutsch et. al. [12].

All of these works deal with speci�cation languages for tran-
sition systems in which transitions may involve the consum-
ing of relational inputs from an external environment, the
production of output tuples, and the modi�cation of internal
state (perhaps in the form of an additional relational store).
In our application, we talk of accesses rather than inputs
from an environment, with a response consisting of reveal-
ing a hidden database instance, rather than updating an
internal store. But in the results of this paper, one can just
as easily think of identifying the hidden Web database with
an internal store, with the accesses being non-deterministic
inserts into the store.
Nevertheless, the logics that arise naturally in our setting

appear orthogonal to those studied in prior work. The initial
Abiteboul et. al. paper [2] focused on �Spocus transducers�
(semi-positive output and cumulative state) which take full
relational inputs, with their internal relations only accumu-
lating them. A direct comparison with our model is di�cult,
since we do not have a notion of �output� � but if we restrict
Spocus transducers to boolean output and singleton inputs,
they are not as powerful as our model, since in our case
the internal state can be modi�ed in non-trivial ways. [2]
proves an undecidability result for an extension of Spocus
transducers in which the inserted data is allowed to be a
projection of the �input relations� (Prop. 3.1 of [2]). The
technique applied is similar to that in Theorem 5.2, but pro-
jection is orthogonal to the update given by access methods.
In our terms, this extension would amount to having the in-
formation added to the hidden database be a projection of
the accessed relations. On the other hand, the addition of
projection does not give the ability to model access meth-
ods, which restrict the input relations by requiring them to
satisfy a selection criterion.
Later works [21, 14, 12, 16] deal with transducers that

can delete as well as insert into their internal state. A key
restriction is input-guardedness, which insures decidability
[14] � input guardedness requires quanti�cations to be re-
stricted to tuples generated from the environmental inputs.
The analogous restriction in our setting would be to restrict
quanti�cation to the bindings, which would be much weaker
than the logics we consider. Thus our decidability and com-
plexity results are not subsumed by these works. On the
other hand, guarded quanti�cation over relational inputs is
not supported by our logics, and hence we do not claim to
subsume results in these works. In addition, [12] allows a
built-in linear order on the domain, which we do not con-
sider for our largest logics. Later work by Damaggio et. al.
considers even richer signatures, including arithmetic [11].

Hidden Web querying. Our work is directly inspired
by previous results on static analysis of schemas with lim-
ited access patterns, a line of work tracing back (at least)
to Ullman's work [22] and Rajaraman et. al. [20], con-
tinuing with Chang/Li's work in the early 2000s [18, 17]
Ludäscher/Nash's and Deutsch et. al.'s work in the mid-
2000's [19, 13] and Cali et. al. [5]. All of them deal in
one way or another with what sequences can occur within
a sequence with limited access patterns. For example, the
question of whether a query can always be answered us-
ing exact grounded access paths � the focus of most of these
works above � can be expressed as a property of the LTS. Ex-
act complexity bounds for query answering derived from the
works above. Containment under access patterns has also
been studied, particularly in [5], which establishes a coN-

Language Complexity DjC FD DF AccOr

AccLTL(FO∃+, 6=Acc) undecidable Yes Yes Yes Yes.

AccLTL(FO∃+Acc) undecidable Yes No Yes Yes

AccLTL+ in 3EXPTIME Yes No Yes Yes

A-automata 2EXPTIME-compl. Yes No Yes Yes

AccLTL(FO∃+0−Acc) PSPACE-compl. Yes No No Yes

AccLTL(FO∃+, 6=0−Acc) PSPACE-compl. Yes Yes No Yes

AccLTL(X)(FO∃+,6=0−Acc) ΣP2 -compl. Yes Yes No No

Table 1: Complexity and application examples for path speci�cations.

EXPTIME upper bound for conjunctive queries. [3] proves
a matching coNEXPTIME lower bound for containment for
conjunctive queries, and a co-2NEXPTIME upper bound for
positive queries. [3] also de�nes the notion of long-term rele-
vance (LTR). They prove a Σp2-completeness result for LTR
over general access paths (�independent accesses�, in their
terminology) while providing a NEXPTIME-completeness
result for conjunctive queries and a 2NEXPTIME bound
for LTR of positive queries over grounded accesses paths
(�dependent accesses�).
Our work provides a general framework where we can

express properties of access paths, including containment,
LTR, their combinations, and their restrictions to constraints.
By providing these within a boolean closed logic, we give
a �exible means of combining properties that one wishes
to verify. Our 2EXPTIME result for non-emptiness of A-
automata gives a bound on containment under access pat-
terns and long-term relevance, as mentioned in the discus-
sion after Theorem 4.6. This is better than the prior bounds
from [5, 3].
Note that [3] also makes some erroneous claims: 1. A

co2NEXPTIME lower bound for containment of positive
queries under access patterns, which is at odds (relative to
complexity-theoretic hypothesis) with our 2EXPTIME up-
per bound 2. A coNEXPTIME upper bound for contain-
ment of UCQs under general access patterns. The proof
given there only works for schemas with a single-access per
relation, while in subsequent work, we have shown that the
problem is 2EXPTIME hard if the single-access restriction
is dropped.

7. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[2] S. Abiteboul, V. Vianu, B. S. Fordham, and Y. Yesha.
Relational transducers for electronic commerce. JCSS,
61(2):236�269, 2000.

[3] M. Benedikt, G. Gottlob, and P. Senellart.
Determining relevance of accesses at runtime. In
PODS, 2011.

[4] A. Calì, D. Calvanese, and D. Martinenghi. Dynamic
query optimization under access limitations and
dependencies. J. UCS, 15(1):33�62, 2009.

[5] A. Calì and D. Martinenghi. Conjunctive query
containment under access limitations. In ER, 2008.

[6] A. Chandra and M. Y. Vardi. The implication
problem for functional and inclusion dependencies is

undecidable. SIAM Journal on Computing,
14(3):671�677, 1985.

[7] S. Chaudhuri and M. Y. Vardi. On the equivalence of
recursive and nonrecursive Datalog programs. JCSS,
54(1):61�78, 1997.

[8] S. Chaudhuri and M. Y. Vardi. On the equivalence of
recursive and nonrecursive datalog programs. JCSS,
54(1):61�78, 1997.

[9] E. M. Clarke, O. Grumberg, and D. Peled. Model
Checking. MIT Press, 2000.

[10] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi. Tree Automata
Techniques and Applications. 1997.

[11] E. Damaggio, A. Deutsch, and V. Vianu. Artifact
systems with data dependencies and arithmetic. In
ICDT, 2011.

[12] A. Deutsch, R. Hull, F. Patrizi, and V. Vianu.
Automatic veri�cation of data-centric business
processes. In ICDT, 2009.

[13] A. Deutsch, B. Ludäscher, and A. Nash. Rewriting
queries using views with access patterns under
integrity constraints. Theor. Comput. Sci.,
371(3):200�226, 2007.

[14] A. Deutsch, L. Sui, and V. Vianu. Speci�cation and
veri�cation of data-driven web applications. JCSS,
73:442�474, May 2007.

[15] E. Emerson. Temporal and modal logic. In Handbook
of Th. Comp. Sci., volume B. MIT, 1990.

[16] C. Fritz, R. Hull, and J. Su. Automatic construction
of simple artifact-based business processes. In ICDT,
2009.

[17] C. Li. Computing complete answers to queries in the
presence of limited access patterns. VLDB J.,
12(3):211�227, 2003.

[18] C. Li and E. Y. Chang. Answering queries with useful
bindings. ACM TODS, 26(3):313�343, 2001.

[19] A. Nash and B. Ludäscher. Processing �rst-order
queries under limited access patterns. In PODS, 2004.

[20] A. Rajaraman, Y. Sagiv, and J. D. Ullman. Answering
queries using templates with binding patterns. In
PODS, 1995.

[21] M. Spielmann. Veri�cation of relational transducers
for electronic commerce. JCSS, 66(1):40�65, 2003.

[22] J. D. Ullman. Principles of Database and
Knowledge-Base Systems, V2. Comp. Sci. Press, 1989.

[23] M. Y. Vardi. Alternating automata and program

veri�cation. In Computer Science Today, pages
471�485, 1995.

APPENDIX
A. PROOF DETAILS

A.1 Proof of Theorem 3.1
Recall the statement:

The satis�ability problem for AccLTL(FO∃+Acc) is
undecidable

The proof works by reducing the problem of determin-
ing whether a collection Γ of functional dependencies (fds)
and inclusion dependencies (ids) implies another functional
dependency σ. Since this problem is known to be unde-
cidable [6], it su�ces to reduce it to unsatis�ability of a
AccLTL(FO∃+Acc) formula.
We now explain the details of the construction. We as-

sume all positions carry the same type (since the undecid-
ability of implication for IDs and FDs is in the untyped
setting). We will also verify the reduction over instances
where all relations are nonempty, allowing us to avoid cer-
tain corner cases.
We �rst give the schema, which extends the relational

schema Sch for the dependencies. For each relation R of ar-
ity k, we have a relation Succ(R) of arity 2k: informally,
Succ(R) will be the successor relation referred to above.
There are two relations Beg(R) (with boolean access IsBindBeg(R))
and End(R) (having boolean access IsBindEnd(R)) with the
same arity as R; these will store the minimal and the maxi-
mal tuples for the ordering generated by Succ(R). In addi-
tion there are relations CheckIncDep(R) and with the same
arity as R, having boolean accesses IsBindCheckIncDep(R).
These are used to check the inclusions dependencies for R.
Similarly we will have predicate ChkFD(R) with arity twice
that of R.
We have a subformula that describes a path that �lls

the relations Beg(R), Succ(R),End(R). The following for-
mula ϕnext(R) describes a transition adding a tuple (~t1,~t2)

to Succ(R) such that (i) ~t1 has a predecessor in the current
instance but does not have a successor in the current in-
stance and (ii) ~t2 does not appear in the successor relation
at all.

(∃~t1~t2~t3 IsBindSucc(R)(~t1,~t2) ∧ Succ(R)pre(~t3,~t1)) ∧
(∃~t1~t2 IsBindSucc(R)(~t1,~t2) ∧ Succ(R)post(~t1,~t2)) ∧
¬(∃~t1~t2~t3 IsBindSucc(R)(~t1,~t2) ∧ Succ(R)pre(~t1,~t3)) ∧
¬(∃~t1~t2~t3 IsBindSucc(R)(~t1,~t2) ∧

Succ(R)pre(~t2,~t3) ∨ Succ(R)pre(~t3,~t2))

The �rst subformula checks the �rst part of (i), the sec-
ond ensures the second part of (i) and the third subformula
checks (ii). The correctness of this formula relies on the fact
that there is only one tuple in Succ(R).
There are also two formulas ϕBeg(R) and ϕEnd(R) that

mark the start and end of the creation of the successor re-
lation. ϕBeg(R) is de�ned as:

∃~t1 IsBindBeg(R)(~t1) ∧ Beg(R)post(~t1)∧
X
`
∃~t1~t2 . IsBindSucc(R)(~t1,~t2) ∧ Beg(R)pre(~t1) ∧

∃~t1~t2 IsBindSucc(R)(~t1,~t2) ∧ Succ(R)post(~t1,~t2)∧
¬(∃~t1~t2 IsBindSucc(R)(~t1,~t2) ∧ Beg(R)pre(~t2)

´

where ϕEnd(R) is de�ned as:

∃~t1 IsBindEnd(R)(~t1) ∧ ∃~t3 Succ(R)pre(~t3,~t1) ∧
∃~t1 IsBindEnd(R)(~t1) ∧ End(R)post(~t1) ∧
¬(∃~t1~t2 IsBindEnd(R)(~t1) ∧ Succ(R)pre(~t1,~t2))

Then the formula we ultimately create will include sub-
formulas of the form:

ϕBeg(R) ∧ X(ϕnext(R)U (ϕEnd(R) ∧ Xϕverify))

where ϕverify, de�ned next, checks the constraints on R.
Note that in any path that satis�es such a formula, the
instance associated to the position satisfying ϕverify must
interpreted Succ(R) as the successor relation of a linear or-
der on a collection of tuples whose arity agrees with R, with
�rst element the sole tuple in Beg(R) and last element the
sole tuple in End(R).

Check of the functional dependencies. Recall that in
the schema we have relations ChkFD(R) with arity twice
that of R. These are used to check if every pair (~t1,~t2)
satis�es all FDs in Γ pertaining to R. At the end of the
check, the FD is satis�ed i� ChkFD(R) contains all tuples
from the part of the instance generated by Succ(R).
First we present a sentence ϕfd-tuple which checks that the

current binding is a pair (~t1,~t2) which is not a counterex-
ample to an FD fd = A −→ B on R:

∃~t1~t2 IsBindChkFD(R)(~t1,~t2) ∧

¬(∃~t1~t2 IsBindChkFD(R)(~t1,~t2) ∧ΠA(~t1) = ΠA(~t2)) ∨

∃~t1~t2 IsBindChkFD(R)(~t1,~t2) ∧ΠB(~t1) = ΠB(~t2)

We now consider an iterator ϕchecknext that checks all pairs.
The formula ϕFD−init begins the check for the �rst pair in
R:

∃~t1 IsBindChkFD(R)(~t1,~t1) ∧ ChkFD(R)post(~t1,~t1)∧

∃~t1 IsBindChkFD(R)(~t1,~t1) ∧ Beg(R)pre(~t1)

This holds at a position i� it has an access on a pair (~t1,~t1)
where ~t1 is the �rst tuple in the ordering, and the access is
successful. Note that there is no need to check the FD on
such a tuple.
The formula ϕFD−next performs the iteration:

∃~t1~t2 IsBindChkFD(R)(~t1,~t2) ∧

ChkFD(R)post(~t1,~t2) ∧
(¬∃~t1~t2 IsBindChkFD(R)(~t1,~t2) ∧

ChkFD(R)pre(~t1,~t2)) ∧
(ϕ1 ∨ ϕ2) ∧ ϕfd-tuple

where ϕ1 is

∃~t1~t2~t3 IsBindChkFD(R))(~t1,~t2) ∧ ChkFD(R)pre(~t1,~t3) ∧

Succ(R)pre(~t3,~t2)

and ϕ2 is

∃~t1~t2~t3~t4 IsBindChkFD(R))(~t1,~t2) ∧ Beg(R)pre(~t2)

∧ChkFD(R)pre(~t3,~t4) Succ(R)pre(~t3,~t1) ∧ End(R)pre(~t4)

The formula states that the current position has an ac-
cess to a pair (~t1,~t2) that has not been checked before where

the access passes the test, and where Pred(~t1,~t2) has been
checked, where this denotes the predecessor in the lexico-
graphic ordering: either ~t1 paired with the predecessor of ~t2
(as in ϕ1) or the predecessor of ~t1 and the �nal tuple (ϕ2).
The formula ϕFD-end ends the check :

∃~t1~t2 IsBindChkFD(R)(~t1,~t2) ∧ Endpre(~t2) ∧ ϕfd-tuple

The formula ϕFD-block = ϕFD-init ∧ XϕFD-nextUϕFD-end

thus will hold at a position i� there is a sequence of accesses
after it verifying the FD for every pair (~t1,~t2).
The treatment of IDs and the treatment of the negation

of FDs is similar (and is also spelled out in the proof of
Theorem 5.2).

A.2 Details for the proof of Proposition 4.4
Recall the statement:

Let Q and Q′ be two positive queries, ACS a
set of access methods, and Σ a set of disjoint-
ness constraints. One can e�ciently produce an
A-automaton A such that Q is contained in Q′ un-
der limited access patterns with disjointness con-
straints i� the language recognized by A is empty.
A similar statement holds for long-term relevance
under disjointness constraints.

Proof. We denote byQpost andQ
′
post the queries derived

from Q and Q′ by replacing any atom R(x) in them by
Rpost(x). Let A be an A-automaton with two states s0 and
s1. The initial state is s0 and the �nal state is s1. The
transitions are

δ(s0, s0) =
^
σ∈Σ

¬ϕσ ∧ ¬Q′post

δ(s0, s1) =
^
σ∈Σ

¬ϕσ ∧ ¬Q′post ∧Qpost

It is easy to see that each instance I resulting from an
access (AcM, b̄) to I′ satis�es Σ i� (I′, (AcM, b̄), I) satis�esV
σ∈Σ ¬ϕσ. The last instance resulting from a sequence of

accesses ρ satis�es Q and ¬Q′ i� the transition of ρ satis�es
¬Q′post ∧Qpost.
Now note that any disjointness constraint σ between R

and S can be expressed by asserting that the negation of
the following conjunctive query holds initially and also on
every transition:

ϕσ = ∃x, yRpost(x) ∧ Spost(y).

A.3 Proof of Lemma 4.5
Recall the statement

For every AccLTL+ formula ϕ there is an equiva-
lent A-automaton A of size exponential in the size
of ϕ

Proof. Let an AccLTL+ formula ϕ be given. We will
translate ϕ into an A-automaton in several steps. In the
�rst step we translate ϕ into an LTL formula over a �-
nite set of predicates. To do this, we consider an alpha-
bet Φ that contains one unary predicate Pχ for every for-
mula χ that is a maximal FO∃+Acc subformula of ϕ. We de-
note by ϕ̃ the LTL formula obtained from ϕ by replacing
each χ in Φ by Pχ. We also transform an access path p =
(I1,AC1, I

′
1), . . . , (In,ACn, I

′
n) into a word p̃ = S1, . . . , Sn

over the �nite alphabet 2Φ where Si is the set of all for-
mulas in Φ that hold on (Ii,ACi, I

′
i), i ≤ n. With these

de�nitions, the following proposition is obvious:

Proposition A.1. For every AccLTL+ formula ϕ and
every access path p, ϕ holds on p i� ϕ̃ holds on p̃.

We next show that the LTL formula ϕ̃ constructed by the
above translation has a certain monotonicity property. We
will call a propositional symbol P ∈ Prop even in ϕ̃ if each
occurrence of P in ϕ̃ is under an even number of negations.
We will later exploit the fact that, by de�nition of AccLTL+,
every atom IsBindAcM must occur under an even number of
negations in ϕ. Hence if χ contains IsBindAcM then Pχ is
even in ϕ̃.
Given a word w = S1, . . . , Sn, a position i ≤ n and a

proposition P ∈ Prop, we de�ne wP,i = S1, . . . , Si−1, Si ∪
{P}, Si+1, . . . , Sn.

Proposition A.2. Let ϕ be an LTL formula and let P
be an even propositional symbol in ϕ. Then for all words w
over 2Prop and positions i ≤ n, if w is a model of ϕ then
wP,i is a model of ϕ.

Proof. We show for all words w and positions i, j in w,
that if (w, j) is a model of ϕ then (wP,i, j) is a model of ϕ.
We show this statement by induction on ϕ. Fix some word
w = S1 . . . Sn, some i, j ≤ n and assume that w, j |= ϕ. If
ϕ is a propositional symbol P that occurs in Si then the
statement is clearly true. If P does not occur in Si then i
must be distinct from j and the statement is trivial. The
case that ϕ is of the form ¬P is not possible because other-
wise P would not be even. The cases where ϕ is of the form
Xψ, Fψ of ψUψ′ follow from the induction hypothesis.

In the second step, we translate the LTL formula ϕ̃ into
an equivalent alternating �nite automaton Aϕ̃ over the al-
phabet Σ = 2Φ. We adapt a construction from [23] to �nite
words. Recall that an alternating �nite automaton is a tuple
(Q,Prop, q0, ρ, F) where Q is a �nite set of states, Prop is a
�nite set of propositions, q0 ∈ Q is an initial state, F ⊆ Q
is a set of accepting states, and ρ is a function mapping
Q× 2Prop to positive boolean combinations of states. A run
over a word w = S1, . . . , Sn with Si ∈ 2Prop is a �nite Q-
labelled tree whose root is labelled by q0 and which satis�es
the following property: If x is a node at level i that is la-
belled q, then x has k children x1, . . . , xk, k ≤ |Q| such that
{x1, . . . , xk} is a model of ρ(q, Si+1). A run is accepting if
each state that labels a leaf is in F . Note that in an accept-
ing run we cannot have ρ(s, q) = false, because �false� is not
satis�able.
Given a �nite set of propositions Prop, an LTL formula ϕ

over the alphabet Prop, we de�ne an alternating automaton
Aϕ that has a state for each subformula of ϕ̃. We de�ne the
dual ϕ of a formula ϕ as follows:

P = ¬P for P ∈ Prop

true = false

false = true

ϕ ∧ ψ = ϕ ∨ ψ
ϕ ∨ ψ = ϕ ∧ ψ

We de�ne the transition function ρ : Q × 2Prop → Q as
follows:

ρ(P, S) = true if P ∈ S
ρ(P, S) = false if P /∈ S

ρ(¬P, S) = true if P /∈ S
ρ(¬P, S) = false if P ∈ S

ρ(ϕ ∧ ψ, S) = ρ(ϕ, S) ∧ ρ(ψ, S)

ρ(¬ϕ, S) = ρ(ϕ, S)

ρ(Xϕ, S) = ϕ

ρ(ϕUψ, S) = ρ(ψ, S) ∨ (ρ(ϕ, S) ∧ ϕUψ)

The initial state of Aϕ̃ is ϕ̃ and any formula of the form
¬(ϕUψ) and ¬Xϕ are �nal states. A straightforward proof
by induction shows that L(ϕ) = L(Aϕ).
Next, we turn Aϕ̃ into an equivalent non-deterministic

automaton Bϕ̃ using a standard subset construction. Note
that the transitions of Bϕ̃ are labelled by sets of proposi-
tions. We will now consider a model of automata, called
boolean automata, in which the transitions are labelled by
boolean combinations of propositions. If such an automa-
ton is in state p and the current input symbol is a set of
propositions S, then it can transition to a state q if there
is a transition (p, ϕ, q) such that S is a model of ϕ. Note
that every non-deterministic �nite automaton A over the al-
phabet 2Prop is equivalent to a boolean automaton B: the
boolean automaton B obtained from A by replacing each set
S on a transition by the formula ψ− ∧ ψ+ where

ψ− =
^
P /∈S

¬P ψ+ =
^
P ∈S

P

Proposition A.3. Let B be a boolean automaton that is
obtained from an LTL formula ψ using the construction de-
scribed above. Then B is equivalent to a boolean automaton
C in which no even propositional symbol of ψ occurs negated.

Proof. Assume that P is even in ψ and that B con-
tains a transition d = (s, ϕ ∧ ¬P, s′). We claim that if D
is the automaton obtained from B by adding a transition
d′ = (s, ϕ ∧ P, s′) then L(B) = L(D). It is clear that by
adding a transition the accepted language can only increase,
so we only need to show that L(D) ⊆ L(B). Assume towards
a contradiction that there is a word w ∈ L(D) that is not in
L(B). Clearly, the accepting run of w in D must make use
of the added transition d′. Let i1, . . . , in be all the positions
on w in which this accepting run uses the transition d′ of
D. Consider the word w′ that is obtained from w by remov-
ing the symbol P from every position ij , j ≤ n. Clearly this
word w′ must be accepted by B. It follows from Proposition
A.2 that in fact w is accepted by B. This is a contradiction
of the assumption that w /∈ L(B), hence L(C) = L(B).
Note also that if we replace the two transitions d and d′ by
a single transition (s, ϕ, s′) then the accepted language does
not change, simply because (ϕ ∧ ¬P) ∨ (ϕ ∧ P) is equiva-
lent to ϕ. The claim follows because we can eliminate each
transition on which an propositional symbol occurs negated
that is even in ϕ.

We use Proposition A.3 to transform Bϕ̃ into a boolean
automaton Cϕ̃ in which no proposition that is even in ϕ̃
occurs negated. In the �nal step we will translate Cϕ̃ into

an A-automaton A as follows. Recall that the boolean for-
mulas on the transitions of Cϕ̃ are over propositions of the
form Pχ where χ is a maximal FO∃+Acc subformula of ϕ, the
formula we were given at the beginning of this proof. Let
D be the automaton obtained from Cϕ̃ by replacing each
proposition Pχ by χ. To verify that D is an A-automaton,
we must make sure that no predicate IsBind AcM occurs in
an FO∃+Acc formula that is negated. This is the case because,

as we observed previously, if IsBindAcM occurs in an FO∃+Acc

formula χ of ϕ, then Pχ is even in ϕ̃. In this case all negated
occurrences of Pχ have been removed when Bϕ̃ was trans-
lated into Dϕ̃. It follows that D is an A-automaton.
We still need to verify that D has size at most exponential

in ϕ. This is the case because the only blow-up in the above
construction happens when we translate the AFA Aϕ̃ into
the NFA Bϕ̃. In particular the translation from ϕ̃ to Aϕ̃
does not introduce a blowup.

A.4 Proof of Lemma 4.9
Recall the statement:

For every A-automaton A, there are progressive
A-automata A1, . . . , An, such that, for each i ≤ n,
the size of Ai is polynomial in the size of A, n is
exponential in the size of A, and L(A) is empty i�
L(A1) ∪ . . . ∪ L(An) is empty.

Proof. The proof consists of two steps. We de�ne an
almost progressive A-automaton to be an A-automaton that
satis�es every property of the de�nition of a progressive A-
automaton apart from Property 3, which concerns transi-
tions leaving the initial state. In the �rst step we show that
every A-automaton can be translated into an exponential
number of almost progressive A-automata. This will be the
subject of Claim 1. In the second step, we show that every
almost progressive A-automaton can be translated into an
exponential number of A-automata. This will be the content
of Claim 2.

Claim 1. For every A-automaton A, there are almost
progressive A-automata A1, . . . , An, such that, for each i ≤
n, the size of Ai is polynomial in the size of A, n is exponen-
tial in the size of A, and L(A) is empty i� L(A1)∪. . .∪L(An)
is empty.

Proof of Claim 1. Assume we are given an A-automaton
A consisting of (Q, q0, δ, F). Recall that the transitions of A
are of the form (s, ψ−∧ψ+, s′) where ψ− is a positive boolean
combination of negated FO∃+Acc sentences that can not con-
tain the predicate IsBind, and where ψ+ is a positive boolean
combination of FO∃+Acc sentences. In the following we will say
that a formula is in transition normal form (TNF) if it is of
this form. Note that a formula in this normal form might
contain several atoms with a predicate IsBindAcM. Condi-
tion 1 in the de�nition of a progressive automaton requires
that that if IsBindAcM(t̄) and IsBindAcM′(t̄

′) are atoms in a
formula on a transition of A, then AcM = AcM′. We will ar-
gue that any formula ϕ in TNF is equivalent to a disjunction
of formulas that satisfy Condition 1. We let ϕAcM be the for-
mula obtained from ϕ by replacing each atom with predicate
IsBindAcM′ by false whenever AcM′ 6= AcM. Recall that at
any point in an access path, the predicate IsBindAcMi holds
of exactly one tuple while all other predicates IsBindAcM are
empty. Hence, when evaluated over access paths, ϕ is equiv-
alent to the disjunction of formulas ϕAcM over all accesses

AcM used in A. We will perform this substitution on all for-
mulas in transitions of A to obtain an automaton in which
all transitions are in the form required by Condition 1 in the
de�nition of a progressive automaton. In the following we
will assume that A is already normalized in this way.
We let Φ be the set of all maximal FO∃+Acc formulas that

appear as subformulas of formulas on transitions of A (hence

Φ contains only positive formulas). Let Φ̃ be the set of for-
mulas ϕ̃ with ϕ ∈ Φ, where ϕ̃ is as de�ned above De�nition
4.8. Given a subset S of Φ̃, we let the complete type of S,
denoted ϕS , be the conjunction that contains every element
of S as a positive atom and each element of Φ̃ \S as a nega-
tive atom. We will call a sequence S̄ = S1, . . . Sh of subsets
of Φ̃ with Si (Si+1 a type evolution.
We now �x a type evolution S̄ = S1, . . . , Sh of length

h ≤ |Φ̃|, and h − 1 transitions d̄ = d1, . . . , dh−1 of A. We
will construct an almost progressive automaton AS̄,d̄. The

state set of AS̄,d̄ is Q×S̄. For each i ≤ h, we add a transition

((s, Si), ϕSi ∧ ϕ̃Si ∧ ϕ
− ∧ ϕ+, (s′, Si))

to AS̄,d̄ i� A contains a transition (s, ϕ− ∧ϕ+, s′) such that

ϕSi implies ϕ̃− ∧ ϕ̃+. We will now add some transitions to
AS̄,d̄ in order to connect states of the form (s, S) to states of
the form (s′, S′) with S 6= S′ (note that such pairs of states
are not yet connected). We will use the transitions in d̄: For
each i < h we assume that di is of the form (s, ϕ− ∧ ϕ+, s′)
and add the transition

((s, Si), ϕSi+1 ∧ ϕ
− ∧ ϕ+, (s′, Si+1))

to AS̄,d̄ i� ϕ̃− ∧ ϕ̃+ implies ϕSi+1 . We then choose (q0, S1)
as the initial state of AS̄,d̄, all (q, Sh) with q ∈ F as the �nal
states, and we de�ne Υpost((q, S)) = S for all states (q, S)
of AS̄,d̄. It is straightforward to verify that all transitions
satisfy Conditions 2, 4 and 6 of the de�nition of a progressive
automaton.
It is possible that there is no path from the initial state to

the �nal state of AS̄,d̄. As usual, we assume that L(AS̄,d̄) =
∅ in this case. With the above de�nitions it is easy to verify
that

L(A) =
[

S̄ ∈S, d̄∈ δh−1

L(AS̄,d̄)

where S is the set of type evolutions with respect to Φ̃. The
direction from left to right is obvious. For the other direction
let w be an access path that is accepted by A. Consider the
evaluation of the instance that A stores on the run that
witnesses the acceptance of w. This evaluation of instances
gives rise to a type evaluation S̄. Let d̄ be the sequence of
transitions that A uses when moving from one type in S̄ to
the next. Then w is accepted by AS̄,d̄.
Note that AS̄,d̄ may not be an almost progressive automa-

ton, because Condition 5 of the de�nition of a progressive
automaton is not satis�ed. There might be two problems:
�rst, AS̄,d̄ might not be a sequence of maximal strongly con-
nected components but rather have a DAG structure. This
problem may be remedied by replacing an AS̄,d̄ by the set
AS̄,d̄,1, . . . , AS̄,d̄,m of maximal subautomata of AS̄,d̄ whose
strongly connected components form a linear order. It is
obvious that L(AS̄,d̄) = L(AS̄,d̄,1) ∪ . . . ∪ L(AS̄,d̄,m).
The second problem is that the formulas on transitions

that connect strongly connected components of A might not

be of the correct form. In particular, they might not sat-
isfy Condition 5 of the de�nition of a progressive automa-
ton, which states that all atoms with a predicate IsBindAcM

must be grounded. We address this problem by replacing
each variable x in a transition between strongly connected
components by a constant c. This replacement must re-
place di�erent variables by di�erent constants. Let A′ be
the result of replacing variables by constants in AS̄,d̄,i as de-
scribed above. Clearly, this operation does not preserve the
language accepted by the automaton. However, it is clear
that L(AS̄,d̄,i) ⊇ L(A′). In addition one can show that every
access path p accepted by AS̄,d̄,i can be relabeled to an ac-
cess path p′ that is accepted by A′. It follows that L(AS̄,d̄,i)
is empty i� L(A′) is empty. With these modi�cations, the
resulting automata are almost progressive automata.

It remains to show that at most exponentially many au-
tomata have been constructed. This is the case as there are
at most exponentially many di�erent automata AS̄,d̄ and
there are at most exponentially many di�erent linear orders
that embed into a given DAG. This completes the proof of
Claim 1.

Claim 2. For every almost progressive A-automaton A,
there are progressive A-automata A1, . . . , An, such that, for
each i ≤ n, the size of Ai is polynomial in the size of A,
n is exponential in the size of A, and L(A) is empty i�S
ϕ,d,c̄ L(Aϕ,d,c̄) is empty.

Proof. Let A = (S, s0, F, δ) be an almost progressive A-
automaton. Then there exists a set Φ of pure post FO∃+Acc

sentences, and a function Υpost mapping the states of A
to complete Φ-types. Recall that Υpost(s0) is a conjunction
ϕ1∧. . .∧ϕn of (possibly negated) pure post FO∃+Acc sentences
in Φ. Let Φ0 be the set complete Φ-types over a subset S0

of {ϕ1, . . . , ϕn}. Let Trans(s0) be the set of transitions of
A that start in the initial state s0. Let arity(Sch) be the
maximal arity of a relation in schema of A, let Const be
the union of all constants that appear in A with a set of
arity(A) domain elements that do not appear as constants
in A. We will de�ne, for each ϕ ∈ Φ0, each d ∈ Trans(s0),
each k ≤ arity(Sch), and each c̄ ∈ Constk an A-automaton
Aϕ,d,c̄.
Recall that as A is an almost progressive automaton, if a

transition d contains two predicates IsBind AcM and IsBindAcM′

then AcM = AcM′. Hence we can associate with every tran-
sition of A a unique access method, called the access method
of that transition below.
Fix some ϕ ∈ Φ0, some d ∈ Trans(s0), some k ≤ arity(Sch),

and some c̄ ∈ Constk. If the number of bound positions in
the access of d is not k, then we de�ne Aϕ,d,c̄ to be an A-
automaton that accepts the empty language. Otherwise the
state set of Aϕ,d,c̄ is S ∪ {q0} for some state q0 /∈ S. We
let q0 be the initial state of Aϕ,d,c̄ and we let the accepting
states of Aϕ,d,c̄ be the accepting states of A. The transitions
of Aϕ,d,c̄ include all transitions of A (including d) and one
extra transition that is obtained from d and ϕ as follows.
Let d be of the form (s0, ψ, s) and let ϕ̃ be the formula ob-

tained from ϕ by replacing all predicates Rpost by Rpre. Let
ψ′ be obtained from ψ by replacing each predicate IsBindAcM(t̄),
where t̄ is a sequence of variables and constants, by IsBindAcM(c̄)
Then we add the transition (q0, ϕ̃ ∧ ψ′, s) to Aϕ,d. We let
Υpre(s0) be ϕ̃ (note that ϕ̃ can not contain a predicate
IsBindAcM). It is clear that ϕ̃ ∧ ψ′ implies Υpre(s0), hence

Condition 3 in the de�nition of a progressive A-automaton
is satis�ed. Still, Aϕ,d,c̄ might not be a progressive A-
automaton, since s might be in the second strongly con-
nected component of A, making all of the elements in the
�rst SCC of A unreachable from q0. In this case we remove
all unreachable states. Then it is easy to check that the
resulting automaton is a progressive automaton.
We still need to prove that L(A) is empty i�

S
ϕ,d,c̄ L(Aϕ,d,c̄)

is empty. It is obvious that L(Aϕ,d) ⊆ L(A) for every ϕ and
d. To show the inclusion of the left hand side in the right
hand side, let p be some access path for which A has an ac-
cepting run r. Let d be the transition of A that r uses �rst
and let p1 = (I, (AcM, b̄), I′) be the �rst transition of p. Let
p̃1 be (I, (AcM, b̄), I) and let ϕ be the (unique) complete Φ-
type that holds on p̃1. Then it is easy to see that there is an
access path p′ that can be obtained from p by consistently
renaming domain elements, such that Aϕ,d,c̄ has a run on
p′.

A.5 Translation from progressive A-automata
non-emptiness to Datalog containment

We now give the construction of the Datalog program PA
and the positive query P′A from a progressive automaton
A, proving Lemma 4.10. Both the construction and the
correctness proof to follow are quite involved.
Let a progressive A-automatonA = (S, s0, F, δ) over schema

Sch be given. As A is progressive, there must be a pure
pre formula Υpre(s0), a set Φ of pure post FO∃+Acc sentences,
and a function Υpost mapping the states of A to complete
Φ-types. Also, A must have a linearly-ordered component
structure C1, . . . , Ch, h = height(A).
We will de�ne a Datalog program PA over the extensional

schema Schext that contains for each R ∈ Sch and 1 ≤ i ≤
height(A), a relation BackgroundRi, and for each R ∈ Sch
and 0 ≤ i ≤ height(A)− 1 a relation IntBackgroundRi; the
arity of both relations is equal to the the arity of R.
To de�ne the intensional schema of PA, we need more no-

tation. Let Φ− (Φ+ respectively) be the set of subformulas
of formulas ϕ− (ϕ+ respectively) that appear on transitions
(s, ϕ− ∧ ϕ+, s′) of A.
The intensional schema Schint of PA contains:
• for each R ∈ Sch and 1 ≤ i ≤ height(A), the symbol

ViewRi with the arity of R.
• for every k ≤ m, and every 1 ≤ i ≤ height(A) where m
is the highest arity of a relation in Sch, a symbol Valik
and a symbol Val≤ik , both of arity k.
• for every 1 ≤ i ≤ height(A), a predicate ReachCi of
arity 0.
• for every subformula ψ of Υpre(s0) a predicate IniEvalψ

of arity f where f is the number of free variables of ψ.
• for every formula ψ in Φ+, every 1 ≤ i ≤ height(A),

and every access AcM of Sch, a predicate Evalψi,AcM, of
arity f + b, where f is the number of free variables of
ψ and b is the number of input positions of AcM
• for every formula ψ in Φ+, every 1 ≤ i ≤ height(A), a

predicate IntEvalψi of arity f+b where f is the number
of free variables of ψ and b is the number of input po-
sitions of the access used in the unique transition from
Ci to Ci+1.
• for every 1 ≤ i ≤ height(A) there is a symbol Equali of
arity 2.

The goal predicate of PA is ReachCh where h = height(A).

The intuition is that the relation R in the background
database that the A-automaton A accesses is equal to the
union of the relations BackgroundR1, . . . ,BackgroundRh, h =
height(A), along with the relations IntBackgroundR0, . . . ,
IntBackgroundRh−1. The tuples in BackgroundRi, i ≤ h
are those that the background database might return when
A accesses relation R whilst remaining in the same strongly
connected component Ci. The tuples in IntBackgroundRi

are those that the background database returns when A ac-
cesses relation R whilst crossing from Ci into component
Ci+1. The union of the relations ViewR1, . . . ,ViewRi cor-
responds to the relation R in the instance that A stores in-
ternally when it leaves Ci. The predicate ReachCi indicates
that there is a path p of LTS associated with the schema
of A, and a run r of A that starts in the initial state and
ends in a state of Ci such that r is a run of A on p. The re-
lation Equali represents the equality relation for the values
appearing in[

1≤j≤h

BackgroundRj ∪
[

1≤j≤h

IntBackgroundRj

where h = height(A) and the constants.

The auxiliary predicates Evalpsii , IntEvalψi and IniEvalψ

represent tuples satisfying a positive formula ψ on di�erent
relations.

The program PA consists of several rules for every transition
of A. Recall that as A is progressive, for each transition
d = (s, ψ− ∧ ψ+, s′) of A there is a unique access method
AcM that can appear in predicates IsBindAcM in ψ− ∧ ψ+.
We now de�ne the rules for the predicates ViewRi. For

each transition d = (s, ψ− ∧ ψ+, s′) remaining within com-
ponent Ci of A, for the unique access method AcM that can
appear in predicates IsBindAcM in ψ− ∧ ψ+, the rule:

ViewRi(πAcM(x̄; v̄)) :− ReachCi,

Evalψ
+

i,AcM(x̄),

BackgroundRi(πAcM(x̄; v̄))

where x̄ is a sequence of pairwise disjoint variables and
πAcM(x̄; v̄) is the permutation of x̄, v̄ that preserves the or-
der among x̄ and v̄ (that is if x̄(i) occurs to the left of x̄(j)
in πAcM(x̄; v̄) then i < j and likewise for v̄) and such that
the variables of x̄ occur exactly on the positions that are
bound by AcM.
For d = (s, ψ− ∧ ψ+, s′) a transition from Ci−1 to Ci and

i > 1, we have the rule:

ViewRi(πAcM(x̄; v̄)) :− ReachCi,

IntEvalψ
+

i (x̄),

IntBackgroundRi−1(πAcM(x̄; v̄))

We also have the rule

ViewR1(x̄) :− IntBackgroundR0(x̄),ReachC1

where x̄ is a sequence of pairwise distinct variables of length
arity(R).
For all 1 ≤ i ≤ h we have the following rules for the

predicates Vali1 and Val≤ik :

Vali1(x) :− BackgroundRi(ȳ, x, z̄)

Vali1(x) :− IntBackgroundRi−1(ȳ, x, z̄)

Here ȳ and z̄ are two sequences of variables such that their
concatenation ȳ, z̄ contains no variable twice and |ȳ, x, z̄| is
the arity of R. For each k ≤ m where m is the maximal
arity of a relation in Sch, the rule

Valik(x̄) :− Vali1(x1), . . . ,Vali1(xk)

where x̄ = x1, . . . , xk are pairwise distinct variables. For all
1 ≤ i ≤ h and 1 ≤ j ≤ i and for all c ∈ C the rules:

Val≤ik (x̄) :− Valjk(x̄)

Val≤i1 (c) :−

For the predicate ReachCi we have the rule

ReachC1 :− IniEvalΥpre(s0)

and for each 1 < i ≤ height(A) the rule

ReachCi :− IntEvalθ
+
i (c̄i−1),ReachCi−1

where θ = θ+ ∧ θ− is the formula on the transition that
connects Ci−1 to Ci.
We have for all 1 ≤ i ≤ h the following rule for Equali:

Equali(x, x) :− Val≤i1 (x)

And for each each constant c ∈ C the following fact added:

Equali(c, c) :−

The rules for the predicates of the form IniEvalψ are:
• For ψ of the form Rpre(ȳ) we de�ne

IniEvalψ(ȳ) :− IntBackgroundR0(ȳ)

• If ψ(ȳ) is of the form t = t′ where t and t′ are both
either a variable or a constant in C and ȳ are the vari-
ables that occur free in ψ, then

IniEvalψ(ȳ) :− Equal1(t, t′)

• If ψ(ȳ) is of the form ψ1(ȳ1) ∧ ψ2(ȳ2), where ȳ, ȳ1 and
ȳ2 are exactly the free variables of ψ, ψ1 and ψ2 respec-
tively, then

IniEvalψ(ȳ) :− IniEvalψ1(ȳ1),

IniEvalψ2(ȳ2).

• If ψ(ȳ) is of the form ψ1(ȳ1) ∨ ψ2(ȳ2), where ȳ, ȳ1 and
ȳ2 are exactly the free variables of ψ, ψ1 and ψ2 respec-
tively, then

IniEvalψ(ȳ) :− IniEvalψ1(ȳ1),Val1|ȳ|(ȳ)

IniEvalψ(ȳ) :− IniEvalψ2(ȳ2),Val1|ȳ|(ȳ)

• If ψ(ȳ) is of the form ∃y . ψ1(y, ȳ) and y, ȳ are exactly
the free variables of ψ1 then

IniEvalψ(ȳ) :− IniEvalψ1(y, ȳ)

The rules for the predicates Evalψ are:

• If ψ(ȳ) is of the form Rpre(t̄), where t̄ is a sequence of
variables and constants and ȳ are exactly the variables
in t̄, then

Evalψi,AcM(x̄, ȳ) :− Valib(x̄),ViewR1(t̄)

...

Evalψi,AcM(x̄, ȳ) :− Valib(x̄),ViewRi(t̄)

where b is the number of bound variables of AcM and
x̄ is a sequence of b pairwise distinct variables that are
disjoint from ȳ.
• If ψ(ȳ) is of the form Rpost(t̄), where t̄ is a sequence of
variables and constants and ȳ are exactly the variables
in t̄, then we add

Evalψi,AcM(x̄, ȳ) :− Valib(x̄),ViewR1(t̄)

...

Evalψi,AcM(x̄, ȳ) :− Valib(x̄),ViewRi(t̄)

where b is the number of bound variables of AcM and
x̄ is a sequence of b pairwise distinct variables that are
disjoint from ȳ. In addition, if the relation R is used in
the access AcM, we add the rule

Evalψi,AcM(ȳ′, ȳ) :− BackgroundRi(ȳ) (∗)

where ȳ′ is the subsequence of ȳ that contains exactly
those positions of ȳ that are bound in the access of d.
• For ψ of the form IsBindAcM(t̄) where t̄ is a sequence
of variables and constants, we add the rule:

Evalψi,AcM(t̄, t̄) :− Vali1(ti1), . . . ,Vali1(tim)

where i1, . . . , im is the sequence of positions of t̄ that
are associated with variables.
• If ψ(ȳ) is of the form t = t′ where t and t′ are both
either a variable or a constant in C and ȳ are the vari-
ables that occur free in ψ, then

Evalψi,AcM(x̄, ȳ) :− Valib(x̄),Equali(t, t
′)

where b is the number of bound variables of AcM and
x̄ is a sequence of b pairwise distinct variables that are
disjoint from ȳ.
• If ψ(ȳ) is of the form ψ1(ȳ1) ∧ ψ2(ȳ2), where ȳ, ȳ1 and
ȳ2 are exactly the free variables of ψ, ψ1 and ψ2 respec-
tively, then

Evalψi,AcM(x̄, ȳ) :− Evalψ1
i,AcM(x̄, ȳ1),

Evalψ2
i,AcM(x̄, ȳ2)

where b is the number of bound variables of AcM and
x̄ is a sequence of b pairwise distinct variables that are
disjoint from ȳ.
• If ψ(ȳ) is of the form ψ1(ȳ1) ∨ ψ2(ȳ2), where ȳ, ȳ1 and
ȳ2 are exactly the free variables of ψ, ψ1 and ψ2 respec-
tively, then

Evalψi,AcM(x̄, ȳ) :− Evalψ1
i,AcM(x̄, ȳ1),Val≤ib (ȳ).

Evalψi,AcM(x̄, ȳ) :− Evalψ2
i,AcM(x̄, ȳ2),Val≤ib (ȳ)

where x̄ and b are as above (as in the corresponding
case of the de�nition of IniEvalψ, we need to �lter by
Val≤ib in order for the rule to be safe).

• If ψ(ȳ) is of the form ∃y . ψ1(y, ȳ) and y, ȳ are exactly
the free variables of ψ1 then

Evalψi,AcM(x̄, ȳ) :− Evalψ1
i,AcM(x̄, y, ȳ)

where x̄ is as above.
The rules for predicates of the form IntEvalψi are:
• If ψ is of the form Rpre(t̄), where t̄ is a sequence of
variables and constants, then

IntEvalψi (c̄i, t̄) :− ViewR1(t̄)

...

IntEvalψi (c̄i, t̄) :− ViewRi(t̄)

where c̄i is the constant vector associated with the tran-
sition from Ci−1 to Ci.
• If ψ is of the form Rpost(t̄), where t̄ is a sequence of
variables and constants, then we add all rules from the
previous case, and also

IntEvalψi (c̄i, t̄) :− ViewR1(t̄)

...

IntEvalψi (c̄i, t̄) :− ViewRi(t̄)

where c̄i is the constant vector associated with the tran-
sition from Ci−1 to Ci. For the relation R used in the
access AcM of the transition from Ci to Ci+1, we add
the rule

IntEvalψi (c̄i, ȳ) :− IntBackgroundRi(ȳ)

• For ψ of the form IsBindAcM(t̄) where t̄ is a sequence
of variables and constants, we add the rule:

IntEvalψi (t̄, t̄) :− Vali+1
1 (tj1), . . . ,Vali+1

1 (tjm)

where j1, . . . , jm is the sequence of positions of t̄ that
are associated with variables.
• If ψ(ȳ) is of the form t = t′ where t and t′ are both
either a variable or a constant in C, and ȳ are the
variables that occur in ψ, then

IntEvalψi (x̄, ȳ) :− Vali+1
b (x̄),Equali+1(t, t′)

where b is the number of bound positions of the access
used by the transition from Ci to Ci+1 and x̄ is a se-
quence of b pairwise distinct variables that are disjoint
from ȳ.
• If ψ(ȳ) is of the form ψ1(ȳ1) ∧ ψ2(ȳ2), where ȳ, ȳ1 and
ȳ2 are exactly the free variables of ψ, ψ1 and ψ2 respec-
tively, then

IntEvalψi (x̄, ȳ) :− IntEvalψ1
i (x̄, ȳ1),

IntEvalψ1
i (x̄, ȳ2)

where x̄ is as above.
• If ψ(ȳ) is of the form ψ1(ȳ1) ∨ ψ2(ȳ2), where ȳ, ȳ1 and
ȳ2 are exactly the free variables of ψ, ψ1 and ψ2 respec-
tively, then

IntEvalψi (x̄, ȳ) :− IntEvalψ1
i (x̄, ȳ),Val≤i+1

b (ȳ)

IntEvalψi (x̄, ȳ) :− IntEvalψ2
i (x̄, ȳ),Val≤i+1

b (ȳ)

where x̄ and b are as above.

• If ψ(ȳ) is of the form ∃y ψ1(y, ȳ) and y, ȳ are exactly
the free variables of ψ1, then

IntEvalψi (x̄, ȳ) :− IntEvalψ1
i (x̄, y, ȳ)

where x̄ is as above.

We now give the construction of the positive query P′A,
which is the disjunction of P′′A and P′′′A . Φ−i is the smallest
set that contains the following formulas:
• Φ−i contains each negative sentence of Υpre(s0), where
we replace each atom Rpre(x̄) by IntBackgroundR0(x̄).
• for every transition (s, ϕ− ∧ ϕ+, s′) of A, if s and s′

are in the same component Ci, then Φ−i contains the
formula ϕ̃− that is obtained from ϕ− by replacing each
atom Rpre(x̄) or Rpost(x̄) by_
j≤ i

BackgroundRj(x̄) ∨
_

j≤ i−1

IntBackgroundRj(x̄);

• for every transition (s, ϕ− ∧ϕ+, s′) of A, if s is in Ci−1

and s′ is in Ci, then Φ−i contains the formula ϕ̃− that
is obtained from ϕ− by replacing each atom Rpre(x̄) by_
j≤ i−1

BackgroundRj(x̄) ∨
_

j≤ i−2

IntBackgroundRj(x̄)

and each atom Rpost(x̄) by_
j≤ i−1

BackgroundRj(x̄) ∨
_

j≤ i−1

IntBackgroundRj(x̄)

We de�ne P′′A to be dual(
V
i≤h Φ̃−i) where h = height(A)

and Φ̃−i is the conjunction of all formulas in Φ−i , and for a
propositional formula ρ, dual(ρ) is its DeMorgan dual. Note
that P′A is a positive formula as the DeMorgan dual of a
formula is equivalent to its negation.

P′′′A is a set of �sanity rules� on IntBackgroundRi. We
wish to insure that for every i only one IntBackgroundRi is
nonempty, and it corresponds to the R associated with the
transition from Ci−1 to Ci. This is enforced by disjuncts
of the form ∃~x IntBackgroundRi(~x) whenever R is not the
relation of the access associated with the transition.

A.6 Correctness of the reduction to Datalog
containment

We now prove that the Datalog program PA and the pos-
itive query P′A constructed from a progressive access au-
tomaton as described above have the properties required for
a reduction. That is, we show that

A has an accepting run i� there is a database D
that is a model of PA but not of P′A.

We start with the more involved direction from right to left.
Hence let D be a database over the extensional schema of
PA. We assume that D is a model of PA but not of P′A.
We �rst present a proposition showing that the Datalog

program P can be decomposed into (not necessarily disjoint)
subprograms

P1, IntP1,P2, IntP2, . . . , IntPh−1,Ph

for h = height(A), that can be evaluated �in sequence�. First
we let P′ contain all rules of PA that do not de�ne predicates
of the form ViewRi or ReachCi for some i.

• P1 contains all rules in P′, the rules of PA that com-
pute the intensional predicate ViewR1, but only those
that correspond to transitions in the strongly connected
component C1, and the rule for the predicate ReachC1.

• For 1 < i ≤ h, Pi contains all rules of P′ and all rules
of PA that compute the intensional predicate ViewRi,
but only those that correspond to transitions in the
strongly connected component Ci.

• For 1 ≤ i < h, IntPi contains all rules of P′, the rule
de�ning ViewRi+1 that has been obtained from the
transition connecting Ci to Ci+1, and the rule de�n-
ing ReachCi+1.

Proposition A.4. For every database D over the exten-
sional schema of PA

PA(D) = Ph(IntPh−1 . . . IntP1(P1(D)) . . .)

Proof of Proposition A.4. It is obvious that the right
hand side is included in the left hand side. The other direc-
tion follows from the fact that if head :− body is a rule in
Pi then body contains only atoms that appear as heads of
rules in P1 ∪ IntP1 . . . ∪ Pi and, similarly, if head :− body
is a rule in IntPi then body contains only atoms that appear
as heads of rules in P1 ∪ IntP1 . . . ∪ IntPi.

We now derive a sequence of claims that will assist in
proving correctness. The �rst few are concerned with the
relationship between the formulas that appear in the au-
tomaton A and predicates in the Datalog program PA. The
�rst claim is that our translation from positive �rst order
formulas into the predicate IniEvalψ is correct.

Claim 3. Let A be a progressive A-automaton and let
ψ(x̄) be a subformula of the pure pre formula Υpre(s0). Also,
let IP be an instance for the signature of the Datalog pro-
gram PA and let IA be the instance over the schema of
the automaton A where each relation R is interpreted by
IP(IntBackgroundR0). Then for any AcM, any b̄, and each
valuation ν

IniEvalψ(ȳ) holds on (IP, ν) i� ψ(ȳ) holds on
((IA, (AcM, ν(ȳ)), IA), ν).

We omit the straightforward proof.
The relationship between positive �rst-order formulas and

the predicate Evalψi,AcM is slightly more complicated, and
we need to introduce some notation to formalize it. Given
a relation R with access AcM, and given a binding b̄ for
AcM, we denote by R|AcM,b̄ the subset of R that contains

exactly those tuples of R that coincide with b̄ on the posi-
tions bound in AcM. Given an instance I over the schema
Sch and a relation R̃ in the schema Sch, we de�ne I +R̃ to
be the instance such that (I +R̃)(R) = I(R) if R 6= R̃ and

(I +R̃)(R) = I(R̃) ∪ R̃ if R = R̃.

Claim 4. Let A be a progressive A-automaton and ψ(x̄)
a FO∃+Acc formula in the formula set of A. Also, let IP be
an instance for the signature of PA and let IiA be the in-
stance over the schema of A where each R is interpreted byS
j≤ i IP(ViewRj). If R̃ is a relation in the schema of A that

has an access AcM, b̄ is a binding for AcM, t is a tuple, and
ν is a valuation, then

Evalψi,AcM(x̄, ȳ) holds on (IP, ν) i� ψ(ȳ) holds on

((IiA, (AcM, ν(x̄)), IiA + IP(BackgroundR̃i)|AcM,ν(x̄)), ν)

If IntI iA is the instance of A where each R is interpreted by[
j≤ i

IP(ViewRj) ∪ IP(IntBackgroundRi−1)

then IntEvalψi,AcM(x̄, ȳ) holds on IP i� ψ(ȳ) holds on

((IntI iA, (AcM, ν(x̄)), IiA + IP(BackgroundR̃i)AcM,ν(x̄)), ν).

The claim can be proved using a straightforward induction
on the structure of ψ(x̄).
The following claims allow us to translate a formula from

the signature of the automaton A to a formula from the
signature of the datalog program PA.

Claim 5. Let IP be an instance for the signature of the
Datalog program and k ≤ height(A). Let IA be the instance
over the schema of A where each R is interpreted by:[

j≤ k

IP(BackgroundRj) ∪
[

j≤ k−1

IP(IntBackgroundRj)

Let c̄ be a vector of values and AcM an access method. Then
for every positive query ϕ and every relation symbol R, if ϕ
holds on (IA, (AcM, c̄), IA) then ϕ̃k holds on IP, where ϕ̃k is
obtained from ϕ by replacing each atom Rpre(x̄) or Rpost(x̄)
by _

j≤ k

BackgroundRj(x̄) ∨
_

j≤ k−1

IntBackgroundRj(x̄).

Claim 6. Let IP be an instance for the signature of the
Datalog program. Let IiA be the instance of the automaton A
where each R is interpreted by:[
j≤ i−1

IP(BackgroundRj) ∪
[

j≤ i−2

IP(IntBackgroundRj)

and let Ii+1
A be the instance of the automaton A where R is

interpreted by[
j≤ i−1

IP(BackgroundRj) ∪
[

j≤ i−1

IP(IntBackgroundRj)

Let c̄ be the sequence of constants associated with the tran-
sition from Ci−1 to Ci and AcM the method associated with
the transition. Then for every positive query ϕ, ϕ holds on
(IiA, (AcM, c̄), Ii+1

A) implies ϕ̃ holds on IP.

We omit the obvious proofs of these claims.
The �nal set of claims concern the automaton only � they

will be concerned with showing that paths within a compo-
nent of the automata are �realizable�.

Claim 7. Let s, s′ be states in the same strongly con-
nected component of A and let r = d1, . . . , dn, di = (si, ϕi, si+1)
be a sequence of transitions such that s = s1 and sn+1 = s′.
If there is a transition t0 = (I0, (AcM0, b̄0), I′0) in the LTS
associated with the schema of A that is a model of Υpost(s),
then there is a path t1 . . . tn, ti = (I′0, (AcMi, b̄i), I

′
0) on which

A has a run r.

Note that the instance of A does not change on the access
path t1 . . . tn.

Proof. Let s, s′, r, t0 be given as in the claim. The
proof is by induction on the length of r.

Base case. Let s0 and s1 be two states of A that are
connected by a transition d1 = (s0, ϕ1, s1) in a strongly
connected component. By hypothesis, there is a transition
t0 = (I0, (AcM0, b̄0), I′0) that is a model of Υpost(s0). As s0

and s1 are in the same strongly connected component of A,
it follows from Condition 4 of the de�nition of a progressive
automaton that t0 is also a model of Υpost(s1). By the same
condition it follows that t0 is a model of ϕ̃1 where ϕ̃1 is the
formula ∃x̄ . ϕ′ where ϕ′ is obtained from ϕ1 by replacing
each atom IsBindAcM(t̄) by t̄ = x̄ and by replacing each
predicate Rpre by Rpost.
We need to show that ϕ1 is satis�able by a transition of

the form (I′0, (AcM′, b̄′), I′0) for some AcM′ and b̄′. To do
this, we consider a formula ϕ̂ that is �intermediate� between
ϕ̃1 and ϕ1: let ϕ̂ be the formula ∃x̄ ϕ′ where ϕ′ is obtained
from ϕ1 by replacing each atom IsBindAcM(t̄) by t̄ = x̄.
Hence ϕ̃1 is the formula obtained from ϕ̂ by replacing each
predicate Rpre by Rpost.
As ϕ̃1 is an existential formula, there must be some se-

quence b̄ of values that witness that t0 is a model of ϕ̃1.
Consider the transition t = (I′0, (AcM, b̄), I′0) where AcM is
the (unique) access method used in d1. We show by induc-
tion on the structure of ϕ′ that it is satis�ed by t. The only
interesting case is when ϕ′ is of the form IsBindAcM(t̄). In
this case ϕ′ must be x̄ = t̄. By de�nition, t̄ must be uni�able
with d̄. It follows that t is a model of ϕ̂.
Finally, observe that both instances in t are the same.

Hence if t is a model of ϕ̂ then t is also a model of ϕ1. It
follows that A has a run d1 on t.

Induction case. Assume the claim for all states that are
connected by a sequence of transitions of length j < n. Now
consider two states s and s′ and a sequence r = d1, . . . , dj+1

of transitions di = (si, ϕi, si+1) such that s = s1 and sj+1 =
s′. By hypothesis t0 = (I0, (AcM0, b̄0), I′0) is a model of
Υpost(s). By induction hypothesis, A has a run d1, . . . , dj on
a sequence of transitions t1 . . . tj as in the statement. Hence
tj is a model of ϕj . As in the base case, it follows from
Condition 4 of the de�nition of a progressive automaton
that tj is a model of ϕ̃j+1.
The rest of the proof of the claim is as in the base case:

there must be some sequence b̄ of values that witness that
tj is a model of ϕ̃j+1. Then, one can show, using the same
arguments as in the base case, that t = (I′0, (AcM, b̄), I′0) is
a model of ϕ̃j+1, where AcM is the (unique) access method
used in dj . It also follows, as in the base case, that t is
also a model of ϕj . Therefore A has a run d1, . . . , dj+1

on t1, . . . , tj , t which completes the proof of the induction
step.

The next claim is very similar to the previous one. The
di�erence is that it is concerned with the formula Υpre(s0)
instead of the formula Υpost(s).

Claim 8. Let s, s′ be states in the same strongly con-
nected component of A and let r = d1, . . . , dn, di = (si, ϕi, si+1)
be a sequence of transitions such that s = s1 and sn+1 = s′.
If there is a transition t0 = (I0, (AcM0, b̄0), I′0) in the LTS
associated with the schema of A that is a model of Υpre(s0),
then there is path t1 . . . tn, ti = (I0, (AcMi, b̄i), I0) on which
A has run r.

Note that the path t1 . . . tn is over the instance I0, whereas
the path in Claim 7 is over I′0.

Proof. Assume that there is a transition t0 of the form
(I0, (AcM0, b̄0), I′0) in the LTS associated with the schema
of A that is a model of Υpre(s0). As Υpre is a pure pre-
formula, it is also a model of (I0, (AcM0, b̄0), I0). Then the
claim follows from Claim 7.

We are now ready to show the main correctness lemma,
which implies that if ReachCi is true in PA then A has a
run that ends in Ci.

Lemma A.5. 1. If Ii = Pi(IntPi−1 . . . IntP1(P1(D)) . . .),
for 1 ≤ i ≤ height(A) and ReachCi holds on Ii, then
there is an access path on which A has a run that ends
in a state in the strongly connected component Ci such
that each relation R of the instance of A after the run
is interpreted by

S
j≤ i Ii(ViewRj).

2. Similarly, if IntIi = IntPi(Pi . . . IntP1(P1(D)) . . .) for
1 ≤ i ≤ height(A) and ReachCi+1 holds on IntIi, then
there is an access path on which A has a run that ends
in a state in the strongly connected component Ci+1

such that each relation R of the instance of A after the
run is interpreted by

S
j≤ i+1 IntIi(ViewRj).

Proof. We prove both statements by mutual induction.

Base Case, Statement 1.
We show the statement for i = 1. Assume that ReachC1

holds on P1(D).
For each relation symbol R in the schema of A, let TR =
{R(t1), . . . , R(tm(R))} be the set of atoms, that contains one
atom R(t) for each tuple t in P1(D)(ViewR1). We de�ne
T =

S
R TR and we denote the elements of T by {a1, . . . , an}.

For some subset S of T , we denote by P1(D)|S the subin-
stance of P1(D) in which the relation R contains exactly the
tuples in S.
We show that for each i ≤ n, there is an access path

p1, . . . , pi on which A has a run r1, . . . , ri such that each
relation R that A stores after the run has the property that

(P1(D)|{a1,...,ai})(ViewR1) ⊆ R ⊆ P1(D)(ViewR1)

This statement implies the base case of Statement 1. The
proof of this statement is itself by induction.

Base case of inner induction. Let a1 be of the form R̃(t1)

and let ρ be the rule in P1 that produces ViewR̃1(t1). Note

that all rules in P1 that produce tuples in ViewR̃1 are of the
form

ViewR̃1(π ˜AcM(x̄; v̄)) :− ReachC1,

Evalψ
+

1, ˜AcM
(x̄),

BackgroundR̃1(π ˜AcM(x̄; v̄))

or of the form

ViewR̃1(x̄) :− IntBackgroundR0(x̄),ReachC1

Hence, ρ must be of one of these forms. Let d = (s, ϕ, s′) be
the transition of A, that ρ is obtained from.
We will show that there is an access path on which A has a

run that starts in the initial state s0 of A and ends in s. Such
a path exists due to the following argument: Recall that we
assumed that ReachC1 holds on P1(D). Hence we know

from the de�nition of PA that IniEvalΥpre(s0) also holds on
P1(D). Let I0 be the instance over the schema of A where

each relation R is interpreted by P1(D)(IntBackgroundR0).
Then by Claim 3 we have that (I0, (AcM, b̄), I0) is a model
of Υpre(s0) for any AcM and b̄. Hence by Claim 8 there is
path p on which A has run r that starts in s0 and ends in
the �rst state s of d. In addition, the instance at the end of
this path is I0.
If a1 = R̃(t1) was produced by a rule ρ of the second form,

then t1 must be in P1(D)(IntBackgroundR̃0). In this case
the inner induction is trivial, because t1 is already in the
initial instance I0 of A. Hence, in the following, we assume
that a1 was produced by a rule ρ of the �rst form.
We will now extend the access path p by a transition

p′ such that pp′ is an access path on which A has a run
rd. We will de�ne the new transition p′ to have the ac-
cess method ˜AcM used in the rule ρ and to have the bind-
ing b̃ that is the restriction of t1 to the positions bound
in AcM. We de�ne a relation R̃el with the relation sym-
bol R̃ as follows. Let {t1, . . . , tk} be all tuples in atoms

of TR̃ = {R̃(t1), . . . , R̃(tn)}. R̃el is the maximal subset of

{t1, . . . , tk} that is of the form R̃| ˜AcM,b̃ (recall that R|AcM,b̄

is the subset of R that contains exactly those tuples of R
that coincide with b̄ on the positions bound in AcM). We
de�ne

I := I0 I′ := I0 + R̃el .

where I0 + R̃el is de�ned above Claim 4. We can now de�ne
p′ = (I, (˜AcM, b̃), I′).
To show that pp′ is an access path on which A has a run

rd we need to verify that the relational structure associated
with p′ is a model of the formula ψ on d. Recall that ψ is
of the form ψ− ∧ψ+ where ψ− is a positive boolean combi-
nation of negated FO∃+Acc sentences that cannot mention the

predicate IsBind, while ψ+ is a FO∃+Acc sentence.
We start with verifying that ψ− is satis�ed. Recall that

by hypothesis, P′A does not hold on D, and that P′A =
dual(

V
i≤h Φ̃−i) where Φ̃−i contains the formula ψ̃− that

is obtained from ψ− by replacing each atom Rpre(x̄) or
Rpost(x̄) by_

j≤ i

BackgroundRj(x̄) ∨
_

j≤ i−1

IntBackgroundRj(x̄);

Therefore, ψ̃− must hold onD. As ψ− contains only negated
FO∃+Acc formulas, it follows from Claim 5 and the construction

of Φ̃−i from Υpost(Ci) that ψ
− holds on (I′, (AcM′, b̄), I′). As

I is a subinstance of I′ this implies that ϕ− holds on p′, as
required.
We now show that p′ is a model of ψ+. Recall that the

tuple t1 is in P1(D), and it has been produced using rule ρ.

By de�nition of P1, Evalψ
+

1, ˜AcM
(b̄) must hold in P1(D) (b̄ is

the binding that we de�ned earlier). Then it follows from
Claim 4 that ψ+ holds on p′.
It is left to show that for each relation R in the instance

I′

(P1(D)|{a1})(ViewR1) ⊆ R ⊆ P1(D)(ViewR1)

This follows easily from our de�nitions as explained now.
Recall that

I′ = I0 + R̃el

and that I0 only contains tuples in P1(D)(IntBackgroundR0).

By de�nition, R̃el contains t1. This shows the left inclu-
sion. The right inclusion holds because, by de�nition of

P, P1(D)(IntBackgroundR0) ⊆ P1(D)(ViewR1). This con-
cludes the proof of the base case of the inner induction.

Induction step of inner induction. By induction we assume
that for some 1 ≤ i ≤ n, there is an access path p1, . . . , pi
on which A has a run r1, . . . , ri such that each relation R
that A stores after r1, . . . , ri has the property that

(P1(D)|{a1,...,ai})(ViewR1) ⊆ R

⊆ P1(D)(ViewR1)

The proof is quite similar to the proof of the base case.
Let ai+1 be of the form R̃(ti+1) and let ρ be the rule in P1

that produces ViewR̃1(ti+1). As all rules in P1 that produce
tuples in ViewR1 are of the form

ViewR̃1(π ˜AcM(x̄; v̄)) :− ReachC1,

Evalψ
+

1, ˜AcM
(x̄),

BackgroundR1(π ˜AcM(x̄; v̄))

or of the form

ViewR̃1(x̄) :− IntBackgroundR0(x̄),ReachC1

ρ must also be of one of these forms. Let d = (s, ϕ, s′) be
the transition of A, that ρ is obtained from.
Note that the state sr, thatA reaches after the run r1, . . . , ri

is not necessarily the state s in d. Hence we show that there
is an r and an access path p such that A has a run r1, . . . , ri, r
on p1, . . . , pi, p that ends in s. Assume that pi is of the form
(si, ϕi, s

′
i). As r1, . . . , ri is a run on p1, . . . , pi, pi must be a

model of ϕi. By Condition 2 ϕi implies Υpost(s
′
i), thus pi

is also a model of Υpost(s
′
i). As in addition, s and sk are

in the same strongly connected component, it follows from
Claim 7 that r and p exist such that r1, . . . , ri, r is a run
on p1, . . . , pi, p. In addition, by Claim 7, the instance at the
end of r1, . . . , ri, r is the same as the instance of A at the
end of r1, . . . , ri.
The case where a1 is produced by a rule of the second form

is trivial. Hence we assume that ρ is of the �rst form. We
now show that there is transition p′ such that p1, . . . , pi, p, p

′

is an access path on which A has a run r1, . . . , ri, r, d where
d is as de�ned above. The de�nition of p′ is like in the base
case: We let the access method be ˜AcM used in the rule
ρ and b̃ be the restriction of ti+1 to the positions bound
in ˜AcM. Let TR̃ = {R̃(t1), . . . , R̃(tk)} and let R̃el be a re-

lation with symbol R̃ that contains a maximal subset of
{t1, . . . , tn} that is of the form R(˜AcM, b̄). We let I be the

instance of A after r1, . . . , ri, r and I′ = I + R̃el. We de�ne
p′ = (I, (˜AcM, b̃), I′).
We omit the argument that the relational structure as-

sociated with p′ is a model of the formula ψ on d, as it is
precisely as in the base case of the inner induction. As in
the base case this is a simple consequence of the de�nitions
that each relation R that A stores after r1, . . . , ri, r, d has
the property that

(P1(D)|{a1,...,ai+1})(ViewR1) ⊆ R ⊆ P1(D)(ViewR1)

Base Case, Statement 2.
We show Statement 2 for i = 1. We de�ne IntI1 =

IntP1(P1(D)) and assume that ReachC2 holds on IntI1. Re-
call that the rule for ReachC2 is of the form

ReachC2 :− IntEvalθ
+
1 (c̄1),ReachC1

Thus ReachC1 must also be true in IntI1. Also, as the rule
for ReachC1 is in P1, ReachC1 must also be true in I1 =
P1(D). Therefore we can use the induction hypothesis of
Statement 1 to conclude that there is an access path p on
which A has a run r that ends in a state sr in the strongly
connected component C1 such that for each relation R in
the schema of A,

R =
[
j≤ 2

P1(D)(ViewRj)

As in the proof of the base case of Statement 1, we need to
extend this run to a run after which the instance stored by
A contains all ViewR2 tuples that IntP1 adds to IntP1(D).
Note that there is only one rule ρ in IntP1 that has a predi-
cate ViewR2 in the head. Let d = (s, ϕ, s′) be the transition
of A from which ρ was obtained. By de�nition of IntP1,
d must be the transition of A that connects the strongly
connected component C1 to the strongly connected compo-
nent C2. If sr is the initial state of A, then we use Claim 8
together with the argument from the base case of the inner
induction of Statement 1 to show that there is an access path
p′ and some r′ such that rr′ is a run of A on pp′ that ends
in s. If sr is not the initial state, then we use the argument
from the induction step of the inner induction of Claim 1
together with Claim 7 to show that such p′ and r′ exist. In
both cases r′ has the property that the instance stored by
A does not change on r′.
Recall that the rule ρ of IntP1 must be of the form

ViewR2(πAcM(x̄; v̄)) :− ReachC2,

IntEvalψ
+

2 (x̄),

IntBackgroundR1(πAcM(x̄; v̄))

It follows from Proposition A.4 that all tuples that this rule
can ever produce can be produced in one step, after eval-
uating P1(D). We exploit this observation by de�ning an

access path on which A can retrieve all ViewR̃2 tuples that
IntP1 adds to P1(D) in a single access. This is possible as
the arguments in ρ that correspond to the binding contain
only the constant vector c̄2 associated with the transition
from C1 to C2.
Formally, we need to de�ne p′′ such that rr′d is a run

on pp′p′′. As in the base case of Statement 1, we choose
I to be the instance of A after the run rr′. Let IntI1 \ I1

be the instance such that (IntI1 \ I1)(R) = IntI1(R) \ I1(R)

for all relations R. Let R̃el be a relation instance for the
relation symbol R̃, which corresponds to the relation sym-
bol ViewR̃2 used in ρ. We de�ne R̃el to contain the tu-
ples in (IntI1 \ I1)(ViewR̃2). Note that R̃el must be of the

form R̃| ˜AcM,c̄2
where ˜AcM is the access method used in

ρ. We de�ne I′ to be I + R̃el. We can now de�ne p′′ =
(I, (˜AcM, c̄2), I′), where ˜AcM is the access method used in ρ.
Verifying that the relational structure associated with p′′

is a model of the formula ψ on d = (s, ϕ, s′) is as in the
base case of the inner induction of Statement 1. It is also
a simple consequence of the de�nitions that each relation
(I + R̃el)(R) that A stores after r1, . . . , ri, r, d is interpreted
by
S
j≤ 2 IntI1(ViewRj).

Induction Case, Statement 1.
We assume both statements for i and de�ne

IntIi = IntPi(Pi(. . .P1(D) . . .))

Ii+1 = Pi+1(IntIi).

We assume that ReachCi+1 is true in Ii+1. As the rule
de�ning ReachCi+1 is in IntPi, ReachCi+1 must also be true
in IntIi. Thus, by the second statement, there is an access
path p on which A has a run r that ends in a state sr in
the strongly connected component Ci+1 such that for each
relation R in the schema of A,

R =
[
j≤ i

IntIi(ViewRj)

We extend p and r in such a way that the instance at the end
of the extended run has the property that for each relation
R in the schema of A,

R =
[

j≤ i+1

Ii+1(ViewRj).

In particular, we must �nd an access path p′ and a run r′

on A that adds all ViewRi+1 tuples in Ii+1 \ IntIi to the
instance stored by A.
For eachR in the schema ofA, let TR = {R(t1), . . . , R(tm(R))}

be the set of atoms that contains the atom R(t) for each
tuple t in (Ii+1 \ IntIi)(ViewRi+1). We de�ne T =

S
R TR

and we denote the elements of T by {a1, . . . , an}. For some
subset S of T , we denote by Pi+1(D)|S the subinstance of
Pi+1(D) in which the relation R contains exactly the tuples
in TR.
As in the base case of Statement 1, we show that for each

i ≤ n, there is an access path p, p1, . . . , pi on which A has a
run r, r1, . . . , ri such that each relation R that A stores after
r, r1, . . . , ri has the property that

((Ii+1 \ IntIi)|{a1,...,ai})(ViewRi+1) ⊆
R ⊆ (Ii+1 \ IntIi)(ViewRi+1)

This statement implies the induction case of Statement 1.
The proof of this statement is by induction.

Base case of inner induction. Let a1 be of the form R̃(t1)

and let ρ be the rule in Pi+1 that produces t1 in ViewR̃i+1.
As all rules in Pi+1 that produce tuples in ViewR̃i+1 are of
the form

ViewR̃i+1(π ˜AcM(x̄; v̄)) :− ReachCi+1,

Evalψ
+

i+1, ˜AcM
(x̄),

BackgroundR̃i+1(π ˜AcM(x̄; v̄))

ρ must also be of this form. Let d = (s, ϕ, s′) be the transi-
tion of A, that ρ is obtained from.
We will show that there is an access path on which A has a

run that ends in s. We use the argument from the induction
step of the inner induction together with Claim 7 to show
that there is an access path p′1 and r′1 such that rr′1 is a run
on pp′1 that ends in s.
We now extend the access path pp′1 by a transition p′′1

such that pp′1p
′′
1 is an access path on which A has a run

rr′1d (we will show the base case of the inner induction with
witnesses p1 = p′1p

′′
1 and r1 = r′1d). We de�ne the new

transition p′′1 as in the base case of Statement 1: We let
p′′1 have the access method ˜AcM used in the rule ρ and the

binding b̃ that is the restriction of t1 to the positions bound
in AcM. We de�ne a relation R̃el with the relation symbol
R̃ as follows. Let {t1, . . . , tk} be all tuples in atoms of TR̃ =

{R̃(t1), . . . , R̃(tn)}. R̃el is the maximal subset of {t1, . . . , tk}
that is of the form R̃| ˜AcM,b̃ (recall that R|AcM,b̄ is the subset
of R that contains exactly those tuples of R that coincide
with b̄ on the positions bound in AcM). We de�ne

I := I0 I′ := I0 + R̃el .

where I0 + R̃el is de�ned above Claim 4. We de�ne p′′1 =
(I, (˜AcM, b̃), I′) and p1 = p′1p

′′
1 and r1 = r′1d.

We omit the argument that the relational structure asso-
ciated with p′′1 is a model of the formula ϕ in the transition
d as it is as in the base case of the proof of Statement 1. It
is also easy to see that each relation R that A stores after
r, r1 has the property that

((Ii+1 \ IntIi)|{t1})(ViewR1) ⊆ R ⊆ (Ii+1 \ IntIi)(ViewR1)

Induction step of inner induction. By induction we assume
that for some 1 ≤ i ≤ n, there is an access path p, p1, . . . , pi
on which A has a run r, r1, . . . , ri such that the relation R
that A stores after the run has the property that

((Ii+1 \ IntIi)|{a1,...,ai})(ViewRi+1) ⊆ R

⊆ (Ii+1 \ IntIi)(ViewRi+1)

The proof is quite similar to the proof of the base case of
the inner induction.
Let ai+1 be of the form R̃(ti+1) and ρ be the rule in P1

that produces the tuple ti+1 in ViewR̃i+1. As all rules in P1

that produce tuples in ViewR̃i+1 are of the form

ViewR̃i+1(π ˜AcM(x̄; v̄)) :− ReachCi+1,

Evalψ
+

i+1, ˜AcM
(x̄),

BackgroundRi+1(π ˜AcM(x̄; v̄))

ρ must also be of this form. Let d = (s, ϕ, s′) be the transi-
tion of A, that ρ is obtained from.
As previously, the state sr that A reaches after the run

r, r1, . . . , ri is not necessarily the state s in d. Hence we show
that there is an r and an access path p such that A has a run
r1, . . . , ri, r on p1, . . . , pi, p that ends in s. This argument is
as in the induction step of the inner induction of the base
case of Statement 1, just that this time we do not have to
worry about the case where sr is the initial state.
The rest of the proof of the inductive case of the inner

induction of the induction step for Statement 1 proceeds ex-
actly as in the inner induction of the base case of statement
1: We show that there is a path for A after which each
relation R that A stores has the property that

((Ii+1 \ IntIi)|{a1,...,ai+1)(ViewR1) ⊆
R ⊆ (Ii+1 \ IntIi)(ViewR1)

We omit the details.

Induction Case, Statement 2.
We now prove Statement 2 of Lemma A.5. The proof

is very similar to the proof of the base case. We assume
Statement 1 for i+ 1 and Statement 2 for i. Also, we de�ne

Ii+1 = Pi+1(. . . IntP1(P1(D)) . . .) IntIi+1 = IntPi+1(Ii+1)

and assume that ReachCi+2 holds on IntIi+1. Recall that
the rule for ReachCi+2 is of the form

ReachCi+2 :− IntEvalθ
+
i (c̄i+1),ReachCi+1

Thus ReachCi+1 must also be true in IntIi+1. Also, the rule
for ReachCi+1 is in IntPi. Hence ReachCi+1 must also be
true in Ii+1 = Pi+1(IntPi . . . IntP1(P1(D)) . . .). Therefore
we can use the induction hypothesis of Statement 1 to con-
clude that there is an access path p on which A has a run
that ends in a state in the strongly connected component
Ci+1 such that for each relation R in the schema of A,

R =
[

j≤ i+1

Ii+1(ViewRj).

where Ii+1 is the instance Pi+1(IntPi . . . IntPi+1(P1(D)) . . .).
As in the proof of the base case of the Statement 1, we

need to extend this run to a run after which the instance
stored by A contains all ViewRi+2 tuples that IntPi+1 adds
to Ii+1. Note that there is only one rule ρ in IntPi+1 that
has a predicate ViewRi+2 in the head. Let d = (s, ϕ, s′) be
the transition of A from which ρ was obtained. By de�ni-
tion of IntPi+1, d must be the transition of A that connects
the strongly connected component Ci+1 to the strongly con-
nected component Ci+2. We use the argument from the
induction step of the inner induction for Claim 1 together
with Claim 7 to show that such p′ and r′ exist. In both
cases r′ has the property that the instance stored by A does
not change on r′.
We need to de�ne a transition p′′ such that rr′d is a

run on pp′p′′. As in the proof of the base case of State-
ment 2 one can de�ne p′′ in such a way that the relational
structure associated with p′′ is a model of the formula ψ on
d = (s, ϕ, s′). In addition, p′′ can be de�ned such that each
relation R that A stores after the run rr′d is interpreted byS
j≤ i+1 IntIi(ViewRj). We omit the detail as the proof is

exactly as in the base case of Statement 2. This concludes
the induction step of Statement 2 of Lemma 4.10, and hence
the proof of Lemma A.5.

We now turn to the other direction of the proof of Lemma
4.10. In this direction we show that if A has an accepting
run, then there is a database D that is a model of PA but
not of P′A.
Hence let p be an access path on which A has a run r.

Let I0 be the initial instance of A on r. For each 1 ≤ i ≤
height(A) and each strongly connected component Ci of A,
let Ii be the database instance produced by the run r imme-
diately before leaving component Ci. Also, let IntIi be the
instance produced by the run r immediately before entering
component Ci+1 (hence IntIi \ Ii contains exactly the tuples
that were added on the access performed by the transition
connecting Ci to Ci+1).
We de�ne D as follows: D contains for each 0 < i ≤

height(A) and each relation R in the schema of A, the rela-
tions

IntBackgroundR0 = I0(R)

BackgroundRi = Ii(R) \ IntIi−1(R)

IntBackgroundRi = IntIi(R) \ Ii(R)

We �rst show that D is a model of PA. Let Ir be the
instance produced at the end of the run r. Note that by the

de�nitions of PA for any database D we have for each R in
the schema of A

PA(D)(ViewRi) ⊆[
j≤ i

Ir(BackgroundRj) ∪ Ir(IntBackgroundRj)

Conversely, one can show that every t in Ir(R) is either
in ViewRi or in IntBackgroundRi in PA(D). Hence we have
that for all i ≤ height(A),[

j≤ i

Ir(BackgroundRj) ∪ Ir(IntBackgroundRj)

⊆ PA(D)(ViewRi)

This can be shown easily by induction on the length of the
run r. As the �nal state of A is in the strongly connected
component Ch, it follows that ViewRh is not empty. There-
fore the the goal predicate ReachCh, h = height(A) is pro-
duced and hence D is a model of PA.

We now show that D is not a model of the positive query
P′A, whose de�nition we recall here. P′A is the disjunction
of P′′A and P′′′A . Φ−i is the smallest set that contains the
following formulas:
• Φ−i contains each negative sentence of Υpre(s0), where
we replace each atom Rpre(x̄) by IntBackgroundR0(x̄).
• for every transition (s, ϕ− ∧ ϕ+, s′) of A, if s and s′

are in the same component Ci, then Φ−i contains the
formula ϕ̃− that is obtained from ϕ− by replacing each
atom Rpre(x̄) or Rpost(x̄) by_
j≤ i

BackgroundRj(x̄) ∨
_

j≤ i−1

IntBackgroundRj(x̄);

• for every transition (s, ϕ− ∧ϕ+, s′) of A, if s is in Ci−1

and s′ is in Ci, then Φ−i contains the formula ϕ̃− that
is obtained from ϕ− by replacing each atom Rpre(x̄) by_
j≤ i−1

BackgroundRj(x̄) ∨
_

j≤ i−2

IntBackgroundRj(x̄)

and each atom Rpost(x̄) by_
j≤ i−1

BackgroundRj(x̄) ∨
_

j≤ i−1

IntBackgroundRj(x̄)

We de�ne P′′A to be dual(
V
i≤h Φ̃−i) where h = height(A)

and Φ̃−i is the conjunction of all formulas in Φ−i , and for a
propositional formula ρ, dual(ρ) is its DeMorgan dual. Note
that P′A is a positive formula as the DeMorgan dual of a
formula is equivalent to its negation.

P′′′A is a set of �sanity rules� on IntBackgroundRi. We
wish to insure that for every i only one IntBackgroundRi is
nonempty, and it corresponds to the R associated with the
transition from Ci−1 to Ci. This is enforced by disjuncts
of the form ∃~x IntBackgroundRi(~x) whenever R is not the
relation of the access associated with the transition.

Having recalled the de�nition, we proceed to the argument.
First, we denote by Υ−pre(s0) and Υ−post(s), for any state
s, the conjunction of negative sentences in Υpre(s0) and
Υpost(s), respectively. In proving this result, we distinguish
three cases. We check that D is not a model for the formulas
in P′A associated with

• the formula Υpre(s0),

• any formula Υ−post(s), s a state of A

• any formula ψ−, where (s, ψ− ∧ ψ+, s) where there ex-
ists an i such that s belongs to Ci and s′ belongs to
Ci+1.

We sketch the �rst case � the others are similar. We
know that the initial transition in the witness access path
must satisfy Υpre(s0), and thus in particular must satisfy all
negated sentences associated with Υpre(s0). If the negation
of the replaced version of a negative sentence of Υpre(s0)
was satis�ed by D, then using the relationship between D
and the run of the automaton, we get a contradiction.

Extension to exact accesses. We now explain the proof
that for A-automata non-emptiness is decidable in 2EXP-
TIME over exact and idempotent paths.
The proof for exact paths will follow the same outline as

in the non-exact case, but with three main changes in the
construction:

• Again we go through use the conversion to progressive
automata from Theorem 4.2, but we will add an ex-
tra �repetitivity� requirement on progressive automata,
saying that any transition within a component could
have happened in a cross-component transition:

For each transition (s, ϕ, s′) that stays within the same
component Ci, there is an �earlier� transition (s1, ϕ1, s2)
where s1 ∈ Cj for j < i, such that ϕ1 implies ϕ.

We will state later how a progressive automaton with
this additional property can be obtained how the prop-
erty is used.

From this, the following strengthening of the `realiz-
ability claim� can be easily shown:

Claim 9. Let s, s′ be states in the same strongly
connected component of A, let p be an exact access path
and r a run of A on p that begins at the initial state
and ends at s. Then there is an exact access path p; p′

extending p and a run r; r′ extending r such that r; r′

ends in s′ and the instance does not change on p′ and
every binding that was used in p′ was already used in
p.

To prove the claim, we have to realize transitions with-
out changing an instance. But given a transition t =
(s, ϕ, s′) we want to realize, we know that ϕ is im-
plied by some ϕ1, where (s1, ϕ1, s2) is a transition of
an earlier component. Since there is a unique cross-
component transition, ϕ1 was satis�ed by an earlier
binding of a transition in p; furthermore the binding
must be a constant binding. We can thus use that
same binding to realize t.

• There will be a change to the Datalog program formed
from the progressive automaton. We will add to the
input schema predicates FirstMadei,AcM for every com-
ponent index i and each access method AcM, whose ar-
ity is the input arity of AcM. Informally these record
which accesses to AcM were made for the �rst time at
i.

We change the rules of the program to state that for
any fact with predicate R occurring at stage i, there
must be a compatible binding and access method AcM
for R such that the binding satis�es FirstMadej,AcM for
some j ≤ i.

• We also add clauses to the positive query prohibiting
that a binding occurs in FirstMadej,AcM for two distinct
j. We also add a clause ensuring that if a tuple is
returned for the �rst time at some stage i, then no
compatible binding has been used in a stage below i.
This last addition makes use of the new input predicate
FirstMadej,AcM.

The two inductive statements of Lemma A.5 are as be-
fore. Claim 9 and the new conditions in the program and in
the positive query are applied in the inductive case of their
proof.
In the induction, we want to extend a path p to realize

a new fact from the Datalog program, associated with a
transition d from a state s to a state s′ in some component
Ci. Using the modi�cation of the positive query and the
Datalog program, we know that this fact has a binding b0
that satis�es FirstMadek,AcM0 for some access method AcM0

k ≤ i. We also know that the fact is incompatible with ev-
ery �old� binding � i.e. with every binding that satis�ed
FirstMadej,AcM for any access method AcM and any j < i.
In particular, we must have b0 satisfying FirstMadei,AcM0 .
Using Claim 9 we can extend to p to a path p; p′ that gets to
state s without changing the instance, and which uses only
�old� accesses � accesses appearing in p. Using the mod-
i�cation of the Datalog program, we know that the facts
corresponding to such accesses must have bindings that sat-
isfy FirstMadej,AcM for j < i. Thus adding the new fact is
compatible with the facts associated with every other access
previously done in p; p′, so we can extend p; p′ with an access
to AcM0 on b, without contradicting exactness. As before, if
the access to AcM0 on b returns several tuples that were not
accounted for in prior facts, then the corresponding facts are
added in the same inductive stage.
We now explain how we reduce from progressive automa-

ton to a family of progressive automata with the additional
�repetitivity property� above. We start with an arbitrary
progressive automaton A, and then iterate over all loop-free
paths p from a start state to an accept state, forming a new
automaton A′p for each, where Ap will have the required
property.
A′p will be partitioned into connected components of the

form A′t for each transition t in p. The component for ti
will precede that for ti+1. At some stage we have a new
transition ti+1 = (s, ϕ, s′) to process. We let Ati+1 be the
maximal connected component of s′ within the subautomata
obtained by restricting A to the states occurring up to t in p.
We create a copy of Ati+1 , A

′
ti+1 in A′ as a new component.

We add a transition from the copy of s in A′ti to the copy
of s′ in A′ti+1 .
One can verify that this automaton has the required prop-

erties.
For idempotent accesses, we perform the same transfor-

mations, but for the positive query we only add clauses to
prohibiting that a binding occurs in FirstMadej,AcM for two
distinct j.

A.7 Proof of Proposition 4.11
We recall the statement:

The containment problem of a Datalog program P
in a positive �rst-order sentence ϕ is in 2EXPTIME.

We �rst show the argument in the absence of constants
and equality atoms. We adapt the proof of that containment

of a Datalog program P in a union of conjunctive queries
can be decided in 2EXPTIME [8]. First, we brie�y recall
the idea of this proof. Let P be a Datalog program and letS
i θi be a union of conjunctive queries. The main idea is to

associate P with a non deterministic tree automata, AP , of
size exponential in the size of P . In the same way, each θi
is associated with a non-deterministic tree automata, Aθi ,
which is of size exponential in P and θi. Theorem 5.11 of
[8] states that P is included in

S
i θi i� AP is included inS

iAθi .
Next, we explain how to use this theorem for the case of

positive queries. Let ϕ be a positive query and
S
i θ
′
i be a

union of conjunctive queries equivalent to ϕ. Without loss of
generality, we can assume that the number of formulas θ′i is
exponential in the size of ϕ and each θi is polynomial in the
size of ϕ. For each i, Aθ′i is the tree automaton associated

with θ′i in Theorem 5.11 of [8]. It is known that for any
non-deterministic tree automata A and A′, there exists an
automaton A′′ such that A′′ is equivalent to the union of A
and A′ such that |A′′| ∈ O(|A| + |A′|) [10]. We can deduce
that there exists a non-deterministic tree automaton Aϕ of
size exponential in ϕ equivalent to

S
iAθ′i . Moreover the

inclusion of two non deterministic tree automata A′ and A′′

is EXPTIME in their sizes.
So it follows from this and Theorem 5.11 of [8] that the

problem of containment of a Datalog program in a positive
query is in 2EXPTIME.
To handle constants and equality atoms, we can translate

a containment problem of P and ϕ to another containment
problem P ′ and ϕ′ where there are no constants or equal-
ity atoms. This is done by considering an extended signa-
ture with unary predicate symbols for each constant symbol,
and rewriting P and ϕ to be disjunctions of constant- and
equality- free queries in the larger signature. The disjunc-
tion considers the ways in which repeated variables can be
realized by a constant c, replacing the repeated variable by
distinct variables that satisfy the unary predicate for c. This
can be done without a blow-up in the Datalog program P ,
by introducing an intensional predicate Eq(x, y) that is de-
�ned by a disjunction. Eq(x, y) is then be re-used in every
other rule. Within ϕ, a blow-up does occur, so we have thus
reduced to checking whether P is contained in

W
i ϕi, where

the disjunction is exponential. By expanding ϕi, we can as-
sume an the right-hand side is an exponential disjunction of
conjunctive queries, and then proceed as in the case without
constants above.

A.8 Proof of Theorem 4.7
We recall the result:

Satis�ability of AccLTL+ and emptiness of A-automata
are 2EXPTIME-hard

We prove only the statement about A-automata; the same
proof technique applies to the logic.
We reduce the containment problem of a Datalog pro-

gram in a union of conjunctive queries to our problem. This
problem is known to be 2EXPTIME-hard [7].
Let Sch be a schema, P = (q,R) a Datalog program with

input relations in Sch with head predicate q, and ϕ be a
positive query over Sch. We denote by Schidb the set of
intentional relations used in the rule of P . For each R ∈
Sch∪ Schidb, we have an access method AcMR on it with all
positions as input.

Let A = (S, S0, F, δ) be the following automata over the
schema Sch∪Schidb:
• S = {s0, sf}, S0 = {s0}, F = {sf},
• For each R ∈ Sch, there exists a transition d in δ, d =

(s0,¬ϕpre ∧ ¬ϕpost ∧ ∃~xAcMR(~x), s0)
• For each rule r = R(~x) : − Br(~x), there exists a tran-
sition d in δ, d = (s0,¬ϕpre ∧ ¬ϕpost ∧ ∃~xBprer (~x) ∧
AcMR(~x), s0).
• For each rule r = q() : − Br(), there exists a transition

(s0, B
pre
r (), sf) ∈ δ.

Above, for any query Q over Sch, Qpre is the query obtained
by changing R to Rpre.
Thus the automaton simply checks that ϕ is never satis-

�ed, and that whenever we have the body of a rule satis�ed,
we do an access on the head predicate. It then accepts if
the goal predicate is ever satis�ed. Clearly, if the automaton
accepts a path, the �nal instance in the path cannot satisfy
ϕ, and will have a chain of witnesses for the goal predicate.
The automaton does not enforce that the intensional pred-
icates of this instance represent a least �xedpoint (i.e. that
they have their appropriate de�nitions). But if we take the
�xedpoint of the resulting con�guration, it will still satisfy
¬ϕ, since we are changing only intensional predicates.
Conversely, suppose there is an instance I satisfying the

Datalog query P along with ¬ϕ; we will construct a path
that is accepted in the automaton. We start with an ac-
cess path p0 that does membership tests for all tuples in I,
obtaining true as a result. We then consider the chain of
rule instantiations f1 . . . fn that witness the truth of P on I.
Each fi can be identi�ed with a grounding of a rule ri with
head predicate H(~x) in P , with b̄i being the corresponding
evaluation of the variables in the body. For each fi we have
an access ACi using method AcMH on the restriction of b̄i to
~x, with the response being true. It is easy to check that the
access path formed from concatenating p0 with the accesses
ACi and their responses is accepted by A.

Exact and Idempotent accesses. The above argument
was under the standard semantics for access paths. But
we note that in the reduction, we used a schema with only
one access method per relation, and only boolean accesses.
Hence every path is exact for such a schema. Thus we also
have hardness when the semantics is restricted to exact ac-
cesses and idempotent accesses.
We now give the formal proof that the reduction is correct.

Given an instance I for the schema Sch∪Schidb, we let I | Sch
(resp. I |Schidb) be the restriction to the relations in Sch
(resp. Schidb).

From automaton non-emptiness to non-containment.

We prove that for each access path ρ recognized by A, ending
with instance In, In+1 | Sch is a witness to non-containment
of P in ϕ. We �rst show that this instance satis�es the Dat-
alog query P . To do this we show that at any instance Ii
on the path, for each intensional predicate R in P , Ii(R) is
a subset of the tuples calculated by P for R on Ii | Sch.

Base case. ρ = ∅, the initial instance is empty, so clearly
containment holds.

Induction step. Let ρ be an access path recognized by A of
length i+ 1. By the induction hypothesis, Ii(R) is included
in the value of R computed by P on Ii | Sch. We denote by
d the last transition associated to the last access in ρ, and
divide up into cases.

• the transition was on an access to a predicate R ∈ Sch.
Such accesses are unconstrained by the automaton A,
so they may bring a new tuple into extensional relation
R. In moving from Ii to Ii+1 The values of the inten-
sional predicates are unchanged, but by monotonicity
of the Datalog program P , the values of the intensional
predicates calculated by the program can only increase
when moving from Ii | Sch to Ii+1 | Sch. Hence the in-
ductive invariant is preserved.

• d is associated with an access to R ∈ Schidb. We con-
sider the case where the matching automaton transition
is not the one associated with the rule for the head
predicate q. Thus the access may bring a new tuple
t into R, and for some rule r = R(~x) : −Br(~x) of P t
must satisfy Bprer (~x) in the transition structure, hence t
must satisfy Br(~x) in Ii. By the induction hypothesis,
t satis�es the corresponding predicates computed by
P (Ii |Sch). Thus t satis�es R in P (Ii | Sch) and hence
by monotonicity satis�es R in P (Ii+1 | Sch).

The case where the transition does correspond to the
head predicate q of P is similar.

Let ρ be a path accepted by A. By construction, the
restriction of the �nal instance In to intensional predicates
is a subrelation of the intensional predicates calculated by
the Datalog program P . In addition, since a �nal state is
reached, the goal predicate must be non-empty. Thus (again
by monotonicity), the Datalog query P must be true on the
restriction of In. On the other hand, the negation of the
positive query ϕ is globally required to hold on all instances
Ii in the ρ, hence it holds in the �nal instance. Thus we
have that In is a witness of the failure of containment of P
in ϕ.

From non-containment to automaton non-emptiness.

Let I be a witness of the failure of containment of P in ϕ.
Let P1(I) . . . Pn(I) be successive approximations of the �x-
point P . We prove by induction that for each i, there exists a
path ρ whose �nal instance Ii has its restriction to Sch pred-
icates being I and its restriction to the intensional predicates
matching the values calculated in Pi(I | Sch).

Base case. We take a path that populates only the predi-
cates of Sch so that they match I.

Induction step. Let ρ be a path recognized by A associated
to Ii = P i(I), which exists by induction. We show how to
extend ρ, abiding by the automaton rules, mimicing each
rule in P �ring on Ii | Sch. We consider a rule r, focusing on
the case where r is of the form R(~x) : − Br(~x) (the case of
the head rule is similar). Consider an arbitrary tuple t such
that Br(t) is satis�ed in P i(I). By construction the corre-
sponding transition is possible from Ii by reading the access
(AcMR, t, {t}). We thus extend ρ by adding on transitions
for each such t.

A.9 Further Details of the Proof of Theorem
4.12

Recall the result:

Satis�ability of an AccLTL(FO∃+0−Acc) formula (over
all access paths) is pspace-complete. The same
holds over exact access path, idempotent access
paths, and paths that are both exact and idempo-
tent.

We refer to the proof in the body of the paper, and we
explain the modi�cations needed for idempotent and exact
accesses. We �rst claim that Lemma 4.13 still holds with
these conditions. For idempotent accesses, we can use the
same process as in the proof of Lemma 4.13: if the original
path was idempotent, the diminished path will be as well.
For exact access paths, we must ensure that when we shrink
the size of instances we do not destroy exactness. We can
think of performing the shrinking in two stages, where the
�rst stage involves throwing in query witnesses as in the
proof of Lemma 4.13 for general access paths. After doing
this, we may have lost exactness: we may have two accesses
ai and aj in the initial path p (prior to shrinking), where
the shrinking maintains a certain tuple t in ai but throws
the same t out of aj . But we can repair this by just making
sure that a tuple is left in aj if it is left in any other ai.
Given Lemma 4.13, the rest of the argument proceeds via

rewriting as above.

A.10 Proof of Theorem 4.14
Recall the theorem's statement:

The satis�ability of AccLTL(X)(FO∃+0−Acc) is ΣP2 -
complete, even when certain accesses are restricted
to be idempotent or exact.

We start out with the proof for general accesses.

Hardness The non-containment of positive relational queries
under �nite types can be reduced to the complement of the
satis�ability problem of either language � this problem is
known to be ΠP

2 -hard.

Upper-Bound. Let an AccLTL(X)(FO∃+0−Acc) formula ϕ be
given. We make use of the �boundedness lemma�, Lemma
4.13, which can be seen also to hold for AccLTL(X)(FO∃+0−Acc):

An AccLTL(X)(FO∃+0−Acc) formula ϕ is satis�able i� there
exists a path ρ that satis�es the following properties:

• The instances have sizes bounded by a polynomial func-
tion in the sizes of ϕ, and Sch.

• The set of bindings used in ρ has size bounded by a
polynomial function in the sizes of ϕ

We will adapt the technique used in the proof of Theorem
4.12.
Our algorithm will guess �rst of all a sequence Ī of in-

stances and a sequence ĀC of accesses of size polynomial in
ϕ. Let B be the set of bindings used in the sequence ĀC
and let Q be the set of positive subformulas of Φ in which
all predicates IsBindAcM have been removed (as in the proof
of Lemma 4.13).
We denote by T (̄I, B) the set of transitions of any of the

following forms:

• Transitions of form (Ii, (AcM,~b), Ii) where~b is in B and
compatible with AcM.

• Transitions of form (Ii, Ai, Ii+1)

For each i, we denote by T (i) the set of transitions of the

form (Ii, (AcM,~b), Ii). For each i, we denote by ti,→ the
transition (Ii, A(i), Ii+1).
For each transition t ∈ T (̄I, B), we let Q+

t be the elements
of Q which are satis�ed by t and we let Q−t be the elements
of Q that are not satis�ed by t. For each query q in Q+

t ,
there is a witness vector vq,i for the satisfaction of q in t. By
making calls to NP and co-NP subalgorithms, our algorithm

can verify that each of these guesses is correct � e.g. that
each query in Q+

t really is satis�ed in t.
We now translate ϕ into a propositional LTLX formula ψ

such that ψ is satis�able i� there is a model of ϕ that satis�es
the regular expression T (0)∗, t0,→, . . . , tn−1,→T (n)∗. More-
over, the translation from ϕ to ψ can be obtained in polyno-
mial time. The main di�erence from the proof of Theorem
4.12 is that we need to express the �sanity axioms� using
only the operator X, whereas in the proof of Theorem 4.12,
these axioms are encoded using the operator G. However,
we notice that the constraints imposed by the formula ϕ on
the path are all restricted to the �rst |ϕ| accesses. Hence,
the �sanity axioms� have to be checked only on the initial |ϕ|
accesses, and can thus be rewritten using only the next-time
operator X.
Finally, our algorithm checks the satis�ability of the rewrit-

ten sentence ψ, which can be done in NP.
We now explain the revision when access methods are re-

quired to be exact or idempotent. The conclusion of Lemma
4.13 still applies in this case, and our algorithm begins as
before by guessing instances and accesses, and guessing and
verifying the positive queries that hold in each instance. One
will need to verify as well that the accesses satisfy idem-
potence or exactness, as required by the underlying access
method. Again it su�ces to consider paths in

T (0)∗, t0,→, . . . , tn−1,→, T (n)∗

We do this using the same propositional rewriting as above.
Note that accesses in T (i)∗ always return empty, and are
all incompatible with each other and the accesses in ti,→.
Therefore these accesses are always exact. The others ac-
cesses have already been veri�ed to have the required prop-
erties.

Additional Note. We notice that the conclusion of Lemma
4.13 also holds for AccLTL(X)(FO∃+,6=0−Acc). The correctness
of the queries can be checked in the same complexity for
positive �rst-order formulas with inequalities. So, the pre-
vious arguments are still correct in this context. We can
conclude that these results can be extended for formulas
with inequalities.

A.11 Proof of Theorem 5.2
Recall the result:

Satis�ability of binding-positive AccLTL(FO∃+, 6=Acc)
queries is undecidable

Again we reduce the problem of implication of functional
dependencies (fds) and inclusion dependencies (ids) for re-
lational databases to the problem of the unsatis�ability of
a AccLTL+ with inequalities formula. For simplicity we
assume all positions carry the same type. We will also
verify the reduction over instances where all relations are
nonempty, allowing us to avoid certain corner cases.
Let Γ be a set of inclusion and functional dependencies,

and σ be a functional dependency over Sch.
We �rst give the schema, which extends the relational

schema Sch for the dependencies. For each relation R of ar-
ity k, we have a relation Succ(R) of arity 2k: informally,
Succ(R) will be the successor relation referred to above.
There are two relations Beg(R) (with boolean access IsBindBeg(R))
and End(R) (having boolean access IsBindEnd(R)) with the

same arity as R; these will store the minimal and the maxi-
mal tuples for the ordering generated by Succ(R). In addi-
tion there are relations CheckIncDep(R) with the same arity
as R, having boolean accesses IsBindCheckIncDep(R). There
are used to check the inclusions dependencies for R.
We now explain the formulas that check the various con-

straints.
First, we verify that each relation Succ(R) represents a

total order on k-tuples. To do this, we �rst check that po-
sitions 1 . . . k and k+ 1 . . . 2k are primary keys for Succ(R).
This can be done by adding a conjunct:

G
`
¬∃~s~t~u Succ(R)(~s,~t) ∧ Succ(R)(~s, ~u) ∧ ti 6= t′i

´
Similarly, we can enforce that at any point relation Beg(R)

has only one tuple in it, and that this tuple does not have a
predecessor in Succ(R) � and similarly for End(R).
The main conjunct of our sentence will assert that we �ll

the successor relations, and �nally move into a �veri�cation
phase�. We will omit the description of the �rst phase, which
uses a variation of the construction to �ll the successor re-
lations in Theorem 3.1. We describe only the subformulas
specifying the veri�cation phase. We will focus on the for-
mulas enforcing an inclusion dependency id from relation R
to relation S, which are of the form:

∃~t1 IsBindBeg(R)(~t1) ∧ X ∃~t2 Beg(R)pre(~t2)

∧ IsBindCheckIncDep(id)(~t2)∧
X[(∃~t~u Succpre(R)(~t, ~u) ∧ CheckIncDep(id)pre(~t)∧

IsBindCheckIncDep(id)(~u)

∧∃~v ∃~w(Succ(S)pre(~v, ~w) ∨ Succ(S)pre(~w,~v)) ∧
^
i

ui = vi)

U (∃~w End(R)pre(~w) ∧ CheckIncDep(id)(~w))]

This describes a sequence s that begins by doing an ac-
cess to Beg(R), and then using a tuple that is in Beg(R),
performing an access to CheckIncDep(id) with the tuple.
Assuming that this sequence began in a con�guration where
Beg(R) was empty, this would mean that s begins by adding
a tuple to Beg(R) and then accessing CheckIncDep(id) on
the same tuple. The formula states that s will then continue
doing accesses to CheckIncDep(id), using tuples whose pre-
decessor is already in CheckIncDep(id) and which have a
witness for id in the successor relation for S. s will only stop
when the last tuple in the order is in CheckIncDep(id).

