Full Abstraction for Nominal General References

Nikos Tzevelekos
nikt@comlab.ox.ac.uk

ICMS, Edinburgh, May 28th 2007

Full Abstraction for Nominal General References - Overview

This talk is about semantics of names and general references.

Full Abstraction for Nominal General References - Overview

This talk is about semantics of names and general references.
We will be talking about:

- Nominal Sets (Gabbay, Pitts)
- A functional higher-order language with nominal general references (Pitts, Stark, NT), the $\nu \rho$-calculus
- Nominal Games (Abramsky, Ghica, Murawski, Ong, Stark, NT)

Nominal Sets [GP99, Pit03]

Assume a countably infinite set of names N and write PERM(N) for the group of finite permutations of N .

Nominal Sets [GP99, Pit03]

Assume a countably infinite set of names N and write $\operatorname{PERM}(\mathrm{N})$ for the group of finite permutations of N .

A nominal set X is a set equipped with an action from $\operatorname{PERM}(\mathrm{N})$,

$$
__{-}^{\circ}: \operatorname{PERM}(\mathrm{N}) \times X \rightarrow X \quad(e . g . \pi \circ x)
$$

Moreover, all $x \in X$ have finite support $\mathrm{S}(x)$,

$$
\mathbf{S}(x) \triangleq\{\alpha \in \mathbf{N} \mid \text { for infinitely many } \beta \cdot(\alpha \beta) \circ x \neq x\}
$$

For $x \in X$ and $\alpha \in \mathbf{N}, \alpha$ is fresh for x, written $\alpha \# x$, iff $\alpha \notin \mathrm{S}(x)$.

Nominal Sets [GP99, Pit03]

Assume a countably infinite set of names N and write $\operatorname{PERM}(\mathrm{N})$ for the group of finite permutations of N .

A nominal set X is a set equipped with an action from $\operatorname{PERM}(\mathrm{N})$,

$$
__{-}^{\circ}: \operatorname{PERM}(\mathrm{N}) \times X \rightarrow X \quad(e . g . \pi \circ x)
$$

Moreover, all $x \in X$ have finite support $\mathrm{S}(x)$,

$$
\mathbf{S}(x) \triangleq\{\alpha \in \mathbf{N} \mid \text { for infinitely many } \beta \cdot(\alpha \beta) \circ x \neq x\}
$$

For $x \in X$ and $\alpha \in \mathbf{N}, \alpha$ is fresh for x, written $\alpha \# x$, iff $\alpha \notin \mathrm{S}(x)$.
N is a nominal set, and so is $\mathrm{N}^{\#}$-the set of finite lists of distinct names.

Constructions in Nominal Sets

\rightsquigarrow If X, Y nominal sets then $X \times Y$ a nominal set.
\rightsquigarrow If Y a nominal set, $X \subseteq Y, X$ closed under permutations then X is a nominal subset of Y.
$\rightsquigarrow R \subseteq X \times Y$ is a nominal relation iff $x R y \Longleftrightarrow(\pi \circ x) R(\pi \circ y)$.
$\rightsquigarrow f: X \rightarrow Y$ is a nominal function iff $f(\pi \circ x)=\pi \circ f(x)$. E.g., $\mathrm{S}(-): X \rightarrow \mathcal{P}_{\text {fin }}(\mathrm{N})$ is a nominal function.

Constructions in Nominal Sets

\rightsquigarrow If X, Y nominal sets then $X \times Y$ a nominal set.
\rightsquigarrow If Y a nominal set, $X \subseteq Y, X$ closed under permutations then X is a nominal subset of Y.
$\rightsquigarrow R \subseteq X \times Y$ is a nominal relation iff $x R y \Longleftrightarrow(\pi \circ x) R(\pi \circ y)$.
$\rightsquigarrow f: X \rightarrow Y$ is a nominal function iff $f(\pi \circ x)=\pi \circ f(x)$.
E.g., $\mathrm{S}(-): X \rightarrow \mathcal{P}_{\text {fin }}(\mathrm{N})$ is a nominal function.
\rightsquigarrow If $\alpha \in \mathbf{N}$ and $x \in X$ then define

$$
\mathrm{S}(\langle\alpha\rangle x)=\mathrm{S}(x) \backslash\{\alpha\}
$$

$$
\langle\alpha\rangle x \triangleq\{(\beta, y) \in \mathrm{N} \times X \mid(\beta=\alpha \vee \beta \# x) \wedge y=(\alpha \beta) \circ x\}
$$

Constructions in Nominal Sets

\rightsquigarrow If X, Y nominal sets then $X \times Y$ a nominal set.
\rightsquigarrow If Y a nominal set, $X \subseteq Y, X$ closed under permutations then X is a nominal subset of Y.
$\rightsquigarrow R \subseteq X \times Y$ is a nominal relation iff $x R y \Longleftrightarrow(\pi \circ x) R(\pi \circ y)$.
$\rightsquigarrow f: X \rightarrow Y$ is a nominal function iff $f(\pi \circ x)=\pi \circ f(x)$.
E.g., $\mathrm{S}(-): X \rightarrow \mathcal{P}_{\text {fin }}(\mathrm{N})$ is a nominal function.
\rightsquigarrow If $\alpha \in \mathbf{N}$ and $x \in X$ then define

$$
\mathrm{S}(\langle\alpha\rangle x)=\mathrm{S}(x) \backslash\{\alpha\}
$$

$$
\langle\alpha\rangle x \triangleq\{(\beta, y) \in \mathrm{N} \times X \mid(\beta=\alpha \vee \beta \# x) \wedge y=(\alpha \beta) \circ x\}
$$

\rightsquigarrow If $x \in X$ and $\vec{\alpha} \in \mathbf{N}^{\#}$ then define

$$
\mathrm{S}\left([x]_{\vec{\alpha}}\right)=\mathrm{S}(x) \cap \mathrm{S}(\vec{\alpha})
$$

$$
[x]_{\vec{\alpha}} \triangleq\{y \in X \mid \exists \pi . \pi \circ \vec{\alpha}=\vec{\alpha} \wedge y=\pi \circ x\}
$$

A Language with Nominal References

Use names for general references!

A Language with Nominal References

Use names for general references! Extend the ν-calculus of Pitts and Stark ([PS93]):

$$
\begin{array}{r}
\text { commands naturals references functions pairs } \\
\mathrm{TY} \ni A, B::=\mathbb{1}|\mathbb{N}|[A]|A \rightarrow B| A \otimes^{\prime} B
\end{array}
$$

A Language with Nominal References

Use names for general references!
Extend the ν-calculus of Pitts and Stark ([PS93]):

$$
\begin{array}{r}
\text { commands naturals references functions pairs } \\
\mathrm{TY} \ni A, B::=\mathbb{1}|\mathbb{N}|[A]|A \rightarrow B| A \otimes^{\prime} B
\end{array}
$$

We need to work in Nominal Sets over a collection of sets of names,

$$
\mathrm{N} \triangleq \biguplus_{A \in \mathrm{TY}} \mathrm{~N}_{A} \quad \operatorname{PERM}(\mathrm{~N})=\bigoplus_{A \in \mathrm{TY}} \operatorname{PERM}\left(\mathrm{~N}_{A}\right)
$$

A Language with Nominal References

Use names for general references!
Extend the ν-calculus of Pitts and Stark ([PS93]):

$$
\begin{array}{r}
\text { commands naturals references functions pairs } \\
\mathrm{TY} \ni A, B::=\mathbb{1}|\mathbb{N}|[A]|A \rightarrow B| A \otimes^{\prime} B
\end{array}
$$

We need to work in Nominal Sets over a collection of sets of names,

$$
\mathrm{N} \triangleq \biguplus_{A \in \mathrm{TY}} \mathrm{~N}_{A} \quad \operatorname{PERM}(\mathrm{~N})=\bigoplus_{A \in \mathrm{TY}} \operatorname{PERM}\left(\mathrm{~N}_{A}\right)
$$

Let $\mathrm{Nom}_{\mathrm{TY}}$ be the category of nominal sets (on N) and nominal functions.

A Language with Nominal References

Use names for general references!
Extend the ν-calculus of Pitts and Stark ([PS93]):

$$
\begin{array}{r}
\text { commands naturals references functions pairs } \\
\mathrm{TY} \ni A, B::=\mathbb{1}|\mathbb{N}|[A]|A \rightarrow B| A \otimes^{\prime} B
\end{array}
$$

We need to work in Nominal Sets over a collection of sets of names,

$$
\mathrm{N} \triangleq \biguplus_{A \in \mathrm{TY}} \mathrm{~N}_{A} \quad \operatorname{PERM}(\mathrm{~N})=\bigoplus_{A \in \mathrm{TY}} \operatorname{PERM}\left(\mathrm{~N}_{A}\right)
$$

Let $\mathrm{Nom}_{\text {TY }}$ be the category of nominal sets (on N) and nominal functions.

\rightsquigarrow we denote names by $\mathrm{a}^{A}, \mathrm{~b}^{B}, \ldots$ or α, β, \ldots, and finite lists of distinct names by $\vec{\alpha}, \vec{\beta}, \ldots$.

The $\nu \rho$-calculus

The $\nu \rho$-calculus is a functional calculus with nominal references.

$$
\operatorname{TY} \ni A, B::=\mathbb{1}|\mathbb{N}|[A]|A \rightarrow B| A \otimes B
$$

The $\nu \rho$-calculus

The $\nu \rho$-calculus is a functional calculus with nominal references.

$$
\begin{array}{rlrl}
\mathrm{TY} & \ni A, B::=\mathbb{1}|\mathbb{N}|[A] \mid A & \rightarrow B \mid A \otimes B \\
\mathrm{TE} \ni M, N::= & x|\lambda x \cdot M| M N & & \lambda \text {-term } \\
& \mid \operatorname{skip} & & \text { return } \\
& |\tilde{n}| \operatorname{pred} M \mid \operatorname{succ} N & & \text { arithmetic } \\
& \mid \operatorname{if0} M \text { then } N_{1} \text { else } N_{2} & & \text { if_then_else } \\
& |\langle M, N\rangle| \text { fst } M \mid \text { snd } N & & \text { pair } / \text { projections }
\end{array}
$$

The $\nu \rho$-calculus

The $\nu \rho$-calculus is a functional calculus with nominal references.

$$
\begin{array}{rlrl}
\mathrm{TY} & \ni A, B::=\mathbb{1}|\mathbb{N}|[A] \mid A & \rightarrow B \mid A \otimes B \\
\mathrm{TE} \ni M, N::= & x|\lambda x . M| M N & & \lambda \text {-term } \\
& \mid \operatorname{skip} & & \text { return } \\
& |\tilde{n}| \text { pred } M \mid \operatorname{succ} N & & \text { arithmetic } \\
& \mid \text { if0 } M \text { then } N_{1} \text { else } N_{2} & & \text { if_then_else } \\
& |\langle M, N\rangle| \text { fst } M \mid \text { snd } N & & \text { pair } / \text { projections } \\
& \mid \alpha & & \text { name, } \alpha=\mathrm{a}^{A} \in \mathrm{~N}_{A} \\
& \mid \nu \alpha . M & & \nu \text {-abstraction } \\
& \mid[M=N] & & \text { name-equality test } \\
& |M:=N|!M & & \text { update } / \text { dereferencing }
\end{array}
$$

The $\nu \rho$-calculus

The $\nu \rho$-calculus is a functional calculus with nominal references.

$$
\begin{array}{rlrl}
\mathrm{TY} & \ni A, B::=\mathbb{1}|\mathbb{N}|[A] \mid A & \rightarrow B \mid A \otimes B \\
\mathrm{TE} \ni M, N::= & x|\lambda x . M| M N & & \lambda \text {-term } \\
& \mid \operatorname{skip} & & \text { return } \\
& |\tilde{n}| \text { pred } M \mid \operatorname{succ} N & & \text { arithmetic } \\
& \mid \operatorname{if0} M \text { then } N_{1} \text { else } N_{2} & & \text { if_then_else } \\
& |\langle M, N\rangle| \text { fst } M \mid \text { snd } N & & \text { pair } / \text { projections } \\
& \mid \alpha & & \text { name, } \alpha=\mathrm{a}^{A} \in \mathrm{~N}_{A} \\
& \mid \nu \alpha . M & & \nu \text {-abstraction } \\
& \mid[M=N] & & \text { name-equality test } \\
& |M:=N|!M & & \text { update } / \text { dereferencing }
\end{array}
$$

$$
\text { VA } \ni V, W::=\tilde{n}|\operatorname{skip}| \alpha|x| \lambda x . M \mid\langle V, W\rangle
$$

The $\nu \rho$-calculus: Typed Terms

Terms are typed in environments $(\Gamma, \vec{\alpha})$ consisting of:

- a set Γ of variable-type pairs
- a list $\vec{\alpha}$ of distinct names $\left(\vec{\alpha} \in \mathbf{N}^{\#}\right)$

```
\vec{\alpha}|\Gamma\vdashM:A
\rightsquigarrow ~ f r e e ~ v a r s ~ i n ~ \Gamma
    \rightsquigarrow (free) names in \vec{\alpha}
```


The $\nu \rho$-calculus: Typed Terms

Terms are typed in environments $(\Gamma, \vec{\alpha})$ consisting of:

- a set Γ of variable-type pairs
- a list $\vec{\alpha}$ of distinct names $\left(\vec{\alpha} \in \mathbf{N}^{\#}\right)$

```
\vec{\alpha}|\Gamma\vdashM:A
\rightsquigarrow free vars in \Gamma
    ~(free) names in \vec{\alpha}
```

$$
\overline{\vec{\alpha} \mid \Gamma \vdash \alpha:[A]}^{\alpha=\mathrm{a}^{A} \# \vec{\alpha}}
$$

The $\nu \rho$-calculus: Typed Terms

Terms are typed in environments $(\Gamma, \vec{\alpha})$ consisting of:

- a set Γ of variable-type pairs
- a list $\vec{\alpha}$ of distinct names $\left(\vec{\alpha} \in \mathbf{N}^{\#}\right)$

```
\vec{\alpha}|\Gamma\vdashM:A
\rightsquigarrow free vars in \Gamma
\rightsquigarrow (free) names in \vec{\alpha}
```

$$
\begin{gathered}
\vec{\alpha} \mid \Gamma, x: A \vdash x: A \\
\overrightarrow{\vec{\alpha} \alpha \mid \Gamma \vdash M: B} \\
\vec{\alpha} \mid \Gamma \vdash \nu \alpha \cdot M: B
\end{gathered}
$$

$$
\overline{\vec{\alpha} \mid \Gamma \vdash \alpha:[A]}^{\alpha=\mathrm{a}^{A} \# \vec{\alpha}}
$$

$$
\frac{\vec{\alpha}|\Gamma \vdash M:[A] \quad \vec{\alpha}| \Gamma \vdash N:[A]}{\vec{\alpha} \mid \Gamma \vdash[M=N]: \mathbb{N}}
$$

The $\nu \rho$-calculus: Typed Terms

Terms are typed in environments $(\Gamma, \vec{\alpha})$ consisting of:

- a set Γ of variable-type pairs
- a list $\vec{\alpha}$ of distinct names $\left(\vec{\alpha} \in \mathbf{N}^{\#}\right)$
$\vec{\alpha} \mid \Gamma \vdash M: A$
\rightsquigarrow free vars in Γ
\rightsquigarrow (free) names in $\vec{\alpha}$

$$
\begin{gathered}
\overrightarrow{\vec{\alpha} \mid \Gamma, x: A \vdash x: A} \\
\frac{\vec{\alpha} \alpha \mid \Gamma \vdash M: B}{\vec{\alpha} \mid \Gamma \vdash \nu \alpha \cdot M: B} \\
\frac{\vec{\alpha} \mid \Gamma \vdash M:[A]}{\vec{\alpha} \mid \Gamma \vdash!M: A}
\end{gathered}
$$

$$
\overline{\vec{\alpha} \mid \Gamma \vdash \alpha:[A]}^{\alpha=\mathrm{a}^{A} \# \vec{\alpha}}
$$

The $\nu \rho$-calculus: Reduction

The reduction calculus is defined in store environments S :

$$
S::=\epsilon|\alpha, S| \alpha:: V, S
$$

with their domains being lists of distinct names.

The $\nu \rho$-calculus: Reduction

The reduction calculus is defined in store environments S :

$$
S::=\epsilon|\alpha, S| \alpha:: V, S
$$

with their domains being lists of distinct names.

$$
\mathrm{EQ} \overline{S \vDash[\alpha=\beta] \longrightarrow S \models \tilde{n}^{n=0}{ }^{n=1} \text { if } \alpha \neq \beta}
$$

$\operatorname{DRF} \overline{S, \alpha:: V, S^{\prime} \models!\alpha \longrightarrow S, \alpha:: V, S^{\prime} \models V}$
UPD $\overline{S, \alpha(:: W), S^{\prime} \vDash \alpha:=V \longrightarrow S, \alpha:: V, S^{\prime} \vDash \text { skip }}$

The $\nu \rho$-calculus: Reduction

The reduction calculus is defined in store environments S :

$$
S::=\epsilon|\alpha, S| \alpha:: V, S
$$

with their domains being lists of distinct names.

$$
\text { EQ } \overline{S \vDash[\alpha=\beta] \longrightarrow S \models \tilde{n}^{n=0}{ }^{n=1} \text { if } \alpha \neq \beta \beta}
$$

DRF $\overline{S, \alpha:: V, S^{\prime} \models!\alpha \longrightarrow S, \alpha:: V, S^{\prime} \models V}$

The $\nu \rho$-calculus: Reduction

The reduction calculus is defined in store environments S :

$$
S::=\epsilon|\alpha, S| \alpha:: V, S
$$

with their domains being lists of distinct names.

$$
\text { EQ } \overline{S \vDash[\alpha=\beta] \longrightarrow S \vDash \tilde{n}} \begin{gathered}
n=1 \text { if } \alpha \# \beta \\
n=0 \text { if } \alpha=\beta \\
\hline
\end{gathered}
$$

$$
\text { NEw }{\underset{S \models \nu \alpha \cdot M \longrightarrow S, \beta \models(\alpha \beta) \circ M}{ }}^{\beta \# S}
$$

$$
\operatorname{DRF} \overline{S, \alpha:: V, S^{\prime} \models!\alpha \longrightarrow S, \alpha:: V, S^{\prime} \models V}
$$

The $\nu \rho$-calculus: Reduction

The reduction calculus is defined in store environments S :

$$
S::=\epsilon|\alpha, S| \alpha:: V, S
$$

with their domains being lists of distinct names.

$$
\text { EQ } \overline{S \vDash[\alpha=\beta] \longrightarrow S \models \tilde{n}^{n=0}{ }^{n=1} \text { if } \alpha \neq \beta \beta}
$$

$$
\begin{aligned}
& \text { NEW } \longrightarrow_{S \models \nu \alpha \cdot M \longrightarrow S, \beta \models(\alpha \beta) \circ M} \beta \neq S \\
& \text { DRF } \overline{S, \alpha:: V, S^{\prime} \vDash!\alpha \longrightarrow S, \alpha:: V, S^{\prime} \models V} \\
& \text { UPD } \overline{S, \alpha(:: W), S^{\prime} \vDash \alpha:=V \longrightarrow S, \alpha:: V, S^{\prime} \vDash \text { skip }}
\end{aligned}
$$

The $\nu \rho$-calculus: Reduction

The reduction calculus is defined in store environments S :

$$
S::=\epsilon|\alpha, S| \alpha:: V, S
$$

with their domains being lists of distinct names.

$$
\begin{aligned}
& \mathrm{EQ} \overline{S \vDash[\alpha=\beta] \longrightarrow S \vDash \tilde{n}}{ }^{n=0} \begin{array}{c}
n=1 \text { if } \alpha \neq \beta \\
n=\beta
\end{array} \\
& \text { NEW } \longrightarrow_{S \vDash \nu \alpha . M \longrightarrow S, \beta \models(\alpha \beta) \circ M}{ }^{\beta \# S} \\
& \text { DRF } \overline{S, \alpha:: V, S^{\prime} \models!\alpha \longrightarrow S, \alpha:: V, S^{\prime} \models V} \\
& \text { UPD } \overline{S, \alpha(:: W), S^{\prime} \vDash \alpha:=V \longrightarrow S, \alpha:: V, S^{\prime} \vDash \text { skip }} \\
& \operatorname{LAM} \overline{S \vDash(\lambda x . M) V \longrightarrow S \vDash M\{V / x\}}
\end{aligned}
$$

The $\nu \rho$-calculus: An Example

$$
M \triangleq \nu \alpha \cdot \alpha:=\left(\lambda x^{\mathbb{N}}, y^{N} \cdot \operatorname{if0} x \text { then } y \text { else }(!\alpha)(\operatorname{pred} x)(\operatorname{succ} y)\right) ;!\alpha
$$

- What does it do?

The $\nu \rho$-calculus: An Example

$$
M \triangleq \nu \alpha \cdot \alpha:=\left(\lambda x^{\mathbb{N}}, y^{\mathbb{N}} \cdot \operatorname{if0} x \text { then } y \text { else }(!\alpha)(\operatorname{pred} x)(\operatorname{succ} y)\right) ;!\alpha
$$

$$
\rightsquigarrow \quad \epsilon \mid \varnothing \vdash M: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}
$$

The $\nu \rho$-calculus: An Example

$$
M \triangleq \nu \alpha . \alpha:=\underbrace{\left(\lambda x^{\mathbb{N}}, y^{\mathbb{N}} . \operatorname{if0} x \text { then } y \text { else }(!\alpha)(\operatorname{pred} x)(\operatorname{succ} y)\right)}_{V} ;!\alpha
$$

$\rightsquigarrow \epsilon \mid \varnothing \vdash M: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}$
$S \vDash M \tilde{n} \tilde{m} \longrightarrow S, \beta:: V \vDash(!\beta) \tilde{n} \tilde{m}$

The $\nu \rho$-calculus: An Example

$$
\begin{aligned}
& M \triangleq \nu \alpha \cdot \alpha:=\underbrace{\left(\lambda x^{\mathbb{N}}, y^{\mathbb{N}} \cdot \operatorname{if0} x \text { then } y \text { else }(!\alpha)(\operatorname{pred} x)(\operatorname{succ} y)\right)} ;!\alpha \\
& \rightsquigarrow \epsilon \mid \varnothing \vdash M: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N} \\
& S \vDash M \tilde{n} \tilde{m} \longrightarrow S, \beta:: V \vDash(!\beta) \tilde{n} \tilde{m} \\
& \quad \longrightarrow S, \beta:: V \vDash V \tilde{n} \tilde{m}
\end{aligned}
$$

The $\nu \rho$-calculus: An Example

$$
\begin{aligned}
& M \triangleq \nu \alpha \cdot \alpha:=\left(\lambda x^{\mathbb{N}}, y^{\mathbb{N}} \cdot \operatorname{if0} x \text { then } y \text { else }(!\alpha)(\operatorname{pred} x)(\operatorname{succ} y)\right) \\
& V!\alpha \\
& \rightsquigarrow \epsilon \mid \varnothing \vdash M: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N} \\
& S \vDash M \tilde{n} \tilde{m} \longrightarrow S, \beta:: V \vDash(!\beta) \tilde{n} \tilde{m} \\
& \longrightarrow S, \beta:: V \vDash V \tilde{n} \tilde{m} \\
& \longrightarrow S, \beta:: V \vDash(!\beta)(n \sim 1)(m \tilde{+} 1)
\end{aligned}
$$

The $\nu \rho$-calculus: An Example

$$
\begin{aligned}
& M \triangleq \nu \alpha \cdot \alpha:=\left(\lambda x^{\mathbb{N}}, y^{\mathbb{N}} \text {.if0 } x \text { then } y \text { else }(!\alpha)(\operatorname{pred} x)(\operatorname{succ} y)\right) ;!\alpha \\
& \text { V } \\
& \rightsquigarrow \epsilon \mid \varnothing \vdash M: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N} \\
& S \vDash M \tilde{n} \tilde{m} \longrightarrow S, \beta:: V \vDash(!\beta) \tilde{n} \tilde{m} \\
& \longrightarrow S, \beta:: V \vDash V \tilde{n} \tilde{m} \\
& \longrightarrow S, \beta:: V \vDash(!\beta)(n \sim 1)(m \stackrel{\sim}{\sim} 1) \\
& \longrightarrow S, \beta:: V \vDash V(n \stackrel{\sim}{-} 1)(m+1) \longrightarrow \ldots
\end{aligned}
$$

The $\nu \rho$-calculus: An Example

$$
\begin{aligned}
M \triangleq \nu \alpha . \alpha & :=\underbrace{\left(\lambda x^{\mathbb{N}}, y^{\mathbb{N}} \cdot \text { if0 } x \text { then } y \text { else }(!\alpha)(\operatorname{pred} x)(\operatorname{succ} y)\right)} ;!\alpha \\
\rightsquigarrow \epsilon \mid \varnothing \vdash M & : \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N} \\
S \vDash M \tilde{n} \tilde{m} & \longrightarrow S, \beta:: V \vDash(!\beta) \tilde{n} \tilde{m} \\
& \longrightarrow S, \beta:: V \vDash V \tilde{n} \tilde{m} \\
& \longrightarrow S, \beta:: V \vDash(!\beta)(n \sim 1)(m \tilde{+} 1) \\
& \longrightarrow S, \beta:: V \vDash V(n \tilde{-} 1)(m \tilde{+} 1) \longrightarrow \ldots \\
& \longrightarrow, \beta:: V \vDash V \tilde{0}(m \tilde{+} n) \longrightarrow S, \beta:: V \vDash m \tilde{+} n
\end{aligned}
$$

$\nu \rho$-calculus : Observational Equivalence

The semantics yields the following notion of equivalence.

$$
\begin{aligned}
& \text { For typed terms } \vec{\alpha} \mid \Gamma \vdash M: A \text { and } \vec{\alpha} \mid \Gamma \vdash N: A, \\
& \begin{aligned}
& \vec{\alpha} \mid \Gamma \vdash M \lesssim N \Longleftrightarrow \\
& \qquad C[-]: \mathbb{N} \cdot\left(\exists S^{\prime} . \vDash C[M] \longrightarrow S^{\prime} \vDash \tilde{0}\right) \\
& \Longrightarrow\left(\exists S^{\prime \prime} . \vDash C[N] \longrightarrow S^{\prime \prime} \vDash \tilde{0}\right)
\end{aligned}
\end{aligned}
$$

where $C[-]$ is a variable- and name-closing context.

$\nu \rho$-calculus : Observational Equivalence

The semantics yields the following notion of equivalence.
For typed terms $\vec{\alpha} \mid \Gamma \vdash M: A$ and $\vec{\alpha} \mid \Gamma \vdash N: A$,

$$
\vec{\alpha} \mid \Gamma \vdash M \lesssim N \Longleftrightarrow
$$

$$
\forall C[-]: \mathbb{N} \cdot\left(\exists S^{\prime} . \vDash C[M] \longrightarrow S^{\prime} \vDash \tilde{0}\right)
$$

$$
\Longrightarrow\left(\exists S^{\prime \prime} . \vDash C[N] \longrightarrow S^{\prime \prime} \vDash \tilde{0}\right)
$$

where $C[-]$ is a variable- and name-closing context.
For example,

$$
\nu \alpha \cdot \nu \beta \cdot \lambda f^{\mathbb{N}_{A} \rightarrow \mathbb{N}} \cdot(\operatorname{zero}(f \alpha) \Leftrightarrow \operatorname{zero}(f \beta)) \quad \not \approx \quad \lambda f^{\mathbb{N}_{A} \rightarrow \mathbb{N}} . \tilde{0}
$$

$\nu \rho$-calculus : Observational Equivalence

The semantics yields the following notion of equivalence.
For typed terms $\vec{\alpha} \mid \Gamma \vdash M: A$ and $\vec{\alpha} \mid \Gamma \vdash N: A$,

$$
\vec{\alpha} \mid \Gamma \vdash M \lesssim N \Longleftrightarrow
$$

$$
\forall C[-]: \mathbb{N} \cdot\left(\exists S^{\prime} . \vDash C[M] \longrightarrow S^{\prime} \vDash \tilde{0}\right)
$$

$$
\Longrightarrow\left(\exists S^{\prime \prime} . \vDash C[N] \longrightarrow S^{\prime \prime} \vDash \tilde{0}\right)
$$

where $C[-]$ is a variable- and name-closing context.
For example,

$$
\nu \alpha \cdot \nu \beta \cdot \lambda f^{\mathbb{N}_{A} \rightarrow \mathbb{N}} \cdot(\operatorname{zero}(f \alpha) \Leftrightarrow \operatorname{zero}(f \beta)) \quad \not \approx \quad \lambda f^{\mathbb{N}_{A} \rightarrow \mathbb{N}} . \tilde{0}
$$

e.g.

$$
C \triangleq \nu \gamma \cdot \gamma:=\tilde{2} ;[-] \lambda x \cdot(\gamma:=\operatorname{pred}(!\gamma) ;!\gamma)
$$

The Adventure - Fully Abstract Semantics

The goal:

$$
M \lesssim N \Longleftrightarrow \llbracket M \rrbracket \lesssim \llbracket N \rrbracket
$$

The Adventure - Fully Abstract Semantics

The goal:

$$
M \lesssim N \Longleftrightarrow \llbracket M \rrbracket \lesssim \llbracket N \rrbracket
$$

The plan:

- Rectify nominal games of [AGM $\left.{ }^{+} 04\right]$;
- Define a store monad in the category of nominal games -solve a domain equation;
- Show soundness;
- Restrict games
-obtain tidy strategies;
- Show definability.

Nominal Games

Game semantics gained prominence in the mid-90's by providing the first fully abstract semantics for PCF. Since then, numerous languages have been assigned their FA semantic counterparts in game semantics.

Nominal Games

Game semantics gained prominence in the mid-90's by providing the first fully abstract semantics for PCF. Since then, numerous languages have been assigned their FA semantic counterparts in game semantics.
Nominal games were introduced in [AGM $\left.{ }^{+} 04\right]$ in order to provide the first FA semantics for the ν-calculus. They modelled local state using sets of names, yet sets were incompatible with determinacy of strategies: the model was flawed.

- But now we have fixed it using lists instead.

Nominal Games

Game semantics gained prominence in the mid-90's by providing the first fully abstract semantics for PCF. Since then, numerous languages have been assigned their FA semantic counterparts in game semantics.
Nominal games were introduced in [AGM $\left.{ }^{+} 04\right]$ in order to provide the first FA semantics for the ν-calculus. They modelled local state using sets of names, yet sets were incompatible with determinacy of strategies: the model was flawed.

- But now we have fixed it using lists instead.

$$
\begin{aligned}
\text { Nominal Games }= & \text { CBV games of [HY99] } \\
& + \text { moves with state of [Ong02] } \\
& + \text { Nominal Sets and strong support }
\end{aligned}
$$

For X a nominal set, $x \in X, x$ has strong support iff

$$
\forall \pi .(\pi \circ x=x \Longleftrightarrow \forall \alpha \in \mathrm{~S}(x) \cdot \pi(\alpha)=\alpha)
$$

Nominal Games: Definition

A (nominal) game can be described by plays -sequences of moves played in alternation by Opponent and Player- on a prearena.

Nominal Games: Definition

A (nominal) game can be described by plays -sequences of moves played in alternation by Opponent and Player- on a prearena.

An arena $A \triangleq\left(M_{A}, \vdash_{A}, \lambda_{A}\right)$ is given by:

- A nominal set M_{A} of moves with strong support;
- A nominal justification relation $\vdash_{A} \subseteq\left(M_{A}+\{\dagger\}\right) \times M_{A}$;
- A nominal labeling function $\lambda_{A}: M_{A} \rightarrow\{O, P\} \times\{A, Q\}$.

Nominal Games: Definition

A (nominal) game can be described by plays -sequences of moves played in alternation by Opponent and Player- on a prearena.

An arena $A \triangleq\left(M_{A}, \vdash_{A}, \lambda_{A}\right)$ is given by:

- A nominal set M_{A} of moves with strong support; Nom $_{\text {TY }}$
- A nominal justification relation $\vdash_{A} \subseteq\left(M_{A}+\{\dagger\}\right) \times M_{A}$;

A nominal labeling function $\lambda_{A}: M_{A} \rightarrow\{O, P\} \times\{A, Q\}$.

Nominal Games: Definition

A (nominal) game can be described by plays -sequences of moves played in alternation by Opponent and Player- on a prearena.

An arena $A \triangleq\left(M_{A}, \vdash_{A}, \lambda_{A}\right)$ is given by:

- A nominal set M_{A} of moves with strong support; $\mathrm{Nom}_{\text {TY }}$
- A nominal justification relation $\vdash_{A} \subseteq\left(M_{A}+\{\dagger\}\right) \times M_{A}$;

A nominal labeling function $\lambda_{A}: M_{A} \rightarrow\{O, P\} \times\{A, Q\}$.
\rightsquigarrow For each $m \in M_{A}: \quad \dagger \vdash_{A} m_{1} \vdash_{A} \cdots \vdash_{A} m_{i} \vdash_{A} m ;$

Nominal Games: Definition

A (nominal) game can be described by plays -sequences of moves played in alternation by Opponent and Player- on a prearena.

An arena $A \triangleq\left(M_{A}, \vdash_{A}, \lambda_{A}\right)$ is given by:

- A nominal set M_{A} of moves with strong support; Nom $_{\text {TY }}$
- A nominal justification relation $\vdash_{A} \subseteq\left(M_{A}+\{\dagger\}\right) \times M_{A}$;

A nominal labeling function $\lambda_{A}: M_{A} \rightarrow\{O, P\} \times\{A, Q\}$.
\rightsquigarrow For each $m \in M_{A}: \quad \dagger \vdash_{A} m_{1} \vdash_{A} \cdots \vdash_{A} m_{i} \vdash_{A} m$;
$\rightsquigarrow \quad$ Initial moves are P-Answers, and if $m_{1} \vdash_{A} m_{2}$ then m_{1}, m_{2} are moves by different players;

Nominal Games: Definition

A (nominal) game can be described by plays -sequences of moves played in alternation by Opponent and Player- on a prearena.

An arena $A \triangleq\left(M_{A}, \vdash_{A}, \lambda_{A}\right)$ is given by:

- A nominal set M_{A} of moves with strong support;
- A nominal justification relation $\vdash_{A} \subseteq\left(M_{A}+\{\dagger\}\right) \times M_{A}$;

A nominal labeling function $\lambda_{A}: M_{A} \rightarrow\{O, P\} \times\{A, Q\}$.
\rightsquigarrow For each $m \in M_{A}: \quad \dagger \vdash_{A} m_{1} \vdash_{A} \cdots \vdash_{A} m_{i} \vdash_{A} m$;
$\rightsquigarrow \quad$ Initial moves are P-Answers, and if $m_{1} \vdash_{A} m_{2}$ then m_{1}, m_{2} are moves by different players;
\rightsquigarrow Answers may only justify Questions.

Basic Arenas, Prearenas

$$
1 \begin{aligned}
1 & M_{1} \triangleq\{*\} & \mathbb{N} & M_{\mathbb{N}} \triangleq \mathbb{N} \\
\lambda_{1}(*) \triangleq P A & \lambda_{\mathbb{N}}(m) \triangleq P A & & N_{A}
\end{aligned} M_{N_{A}} \triangleq \mathbf{N}_{A} .
$$

Basic Arenas, Prearenas

$$
\begin{array}{rlrlr}
1 & M_{1} \triangleq\{*\} & \mathbb{N} & M_{\mathbb{N}} \triangleq \mathbb{N} & \boxed{N_{A}}
\end{array} M_{N_{A}} \triangleq \mathbf{N}_{A}
$$

Basic Arenas, Prearenas

$$
\begin{aligned}
1 & M_{1} \triangleq\{*\} & \mathbb{N} & M_{\mathbb{N}} \triangleq \mathbb{N}
\end{aligned} \mathbb{N}_{A} c c M_{N_{A}} \triangleq \mathbf{N}_{A}
$$

Basic Arenas, Prearenas

$$
\begin{array}{lllll}
1 & M_{1} \triangleq\{*\} & \mathbb{N} & M_{\mathbb{N}} \triangleq \mathbb{N} & \boxed{N_{A}}
\end{array} M_{N_{A}} \triangleq \mathbf{N}_{A}
$$

A non-flat arena:

$$
\mathbb{N} \Rightarrow N_{A}
$$

Basic Arenas, Prearenas

$$
\begin{array}{lllll}
1 & M_{1} \triangleq\{*\} & \mathbb{N} & M_{\mathbb{N}} \triangleq \mathbb{N} & \boxed{N_{A}}
\end{array} M_{N_{A}} \triangleq \mathbf{N}_{A}
$$

A non-flat arena:

$$
\mathbb{N} \Rightarrow N_{A}
$$

$$
\text { * } P A
$$

Basic Arenas, Prearenas

$$
\begin{array}{lllll}
1 & M_{1} \triangleq\{*\} & \mathbb{N} & M_{\mathbb{N}} \triangleq \mathbb{N} & \boxed{N_{A}}
\end{array} M_{N_{A}} \triangleq \mathbf{N}_{A}
$$

A non-flat arena:

$$
\begin{array}{cc}
\mathbb{N} \Rightarrow N_{A} & \\
\stackrel{*}{k} & P A \\
\stackrel{O Q}{*} & O Q
\end{array}
$$

Basic Arenas, Prearenas

$$
\begin{array}{lllll}
1 & M_{1} \triangleq\{*\} & \mathbb{N} & M_{\mathbb{N}} \triangleq \mathbb{N} & \boxed{N_{A}}
\end{array} M_{N_{A}} \triangleq \mathbf{N}_{A}
$$

A non-flat arena:

$$
\mathbb{N} \Rightarrow N_{A}
$$

$O Q$
$P A$

Basic Arenas, Prearenas

$$
\begin{array}{lllll}
1 & M_{1} \triangleq\{*\} & \mathbb{N} & M_{\mathbb{N}} \triangleq \mathbb{N} & \boxed{N_{A}}
\end{array} M_{N_{A}} \triangleq \mathbf{N}_{A}
$$

A non-flat arena:

$$
\begin{array}{cc}
\mathbb{N} \Rightarrow N_{A} & \\
\underbrace{*}_{\alpha} & \begin{array}{l}
P A \\
\underbrace{*}_{i}
\end{array} \\
P A
\end{array}
$$

A prearena is an arena with its initial moves labeled $O Q$.

Arena Constructions

For nominal arenas A, B, define $A \otimes B, A_{\perp}, A \xlongequal[\Rightarrow]{\Rightarrow}$ and $A \Rightarrow B$:

Arena Constructions

For nominal arenas A, B, define $A \otimes B, A_{\perp}, A \xlongequal[\Rightarrow]{\approx} B$ and $A \Rightarrow B$:

Arena Constructions

For nominal arenas A, B, define $A \otimes B, A_{\perp}, A \xlongequal[\Rightarrow]{\Rightarrow}$ and $A \Rightarrow B$:

Arena Constructions

For nominal arenas A, B, define $A \otimes B, A_{\perp}, A \xlongequal[\Rightarrow]{\approx}$ and $A \Rightarrow B$:

Arena Constructions

For nominal arenas A, B, define $A \otimes B, A_{\perp}, A \xlongequal[\Rightarrow]{\approx}$ and $A \Rightarrow B$:

Also, the prearena $A \rightarrow B$:

Arena Constructions

For nominal arenas A, B, define $A \otimes B, A_{\perp}, A \xlongequal[\Rightarrow]{\Rightarrow} B$ and $A \Rightarrow B$:

Also, the prearena $A \rightarrow B$:

$$
\begin{aligned}
& M_{A \rightarrow B} \triangleq M_{A}+M_{B} \\
& \left.\lambda_{A \rightarrow B} \triangleq\left[\left(i_{A} \mapsto O Q\right), m_{A} \mapsto \overline{\lambda_{A}}\left(m_{A}\right)\right), \lambda_{B}\right] \\
& \vdash_{A \rightarrow B} \triangleq\left\{\left(\dagger, i_{A}\right),\left(i_{A}, i_{B}\right)\right\} \cup\left\{(m, n) \mid m \vdash_{A, B} n\right\}
\end{aligned}
$$

Sequences of Moves

For a prearena A, a sequence s of moves from A is:

- A justified sequence of moves if:
- it is OP-alternating,
- each non-initial move in s is justified by an earlier move,
- there is at most one initial move.

Sequences of Moves

For a prearena A, a sequence s of moves from A is:

- A justified sequence of moves if:
- it is OP-alternating,
- each non-initial move in s is justified by an earlier move,
- there is at most one initial move.
- A legal sequence if it is a justified sequence satisfying:

Visibility \& Well-Bracketing

Sequences of Moves

For a prearena A, a sequence s of moves from A is:

- A justified sequence of moves if:
- it is OP-alternating,
- each non-initial move in s is justified by an earlier move,
- there is at most one initial move.
- A legal sequence if it is a justified sequence satisfying:

Visibility \& Well-Bracketing
Moreover, the P-view, $\ulcorner s\urcorner$, of a justified sequence s is given by:

$$
\begin{aligned}
\ulcorner s x\urcorner \triangleq\ulcorner s\urcorner x & & \text { if } x \text { a P-move } \\
\ulcorner x\urcorner \triangleq x & & \text { if } x \text { is initial } \\
\left\ulcorner\overparen{s s^{\prime}}\right\urcorner \triangleq\ulcorner s\urcorner \overparen{x y} & & \text { if } y \text { an O-move justified by } x
\end{aligned}
$$

Moves and Plays

For a prearena A, let a move-with-names be: $m^{\vec{\alpha}}$

Moves and Plays

For a prearena A, let a move-with-names be:

Writing $m^{\vec{\alpha}}$ as $x: \underline{x} \triangleq m$ and $\operatorname{nlist}(x) \triangleq \vec{\alpha}$.

Moves and Plays

For a prearena A, let a move-with-names be:

Writing $m^{\vec{\alpha}}$ as $x: \underline{x} \triangleq m$ and $\operatorname{nlist}(x) \triangleq \vec{\alpha}$.

A play is a legal sequence of moves-with-names s satisfying:
(NC1) P-moves may (only) add fresh names to the local state;
(NC2) If a P-move x contains in its support a name α that is fresh for the previous P -view then α must appear in nlist (x);
(NC3) O-moves don't change the local state even if they contain fresh names in their supports.

An $\vec{\alpha}$-play is a play with its first move having name-list $\vec{\alpha}$.

Moves and Plays

For a prearena A, let a move-with-names be:

Writing $m^{\vec{\alpha}}$ as $x: \underline{x} \triangleq m$ and $\operatorname{nlist}(x) \triangleq \vec{\alpha}$.

A play is a legal sequence of moves-with-names s satisfying:
(NC1) If x a P-move in s preceded by y then $\operatorname{nlist}(y) \leq n l i s t(x)$; if $\alpha \#$ nlist (x) and $\alpha \# \operatorname{nlist}(y)$ then $\alpha \# s_{<x}$ (α introduced by P).
(NC2) If x a P-move, $\alpha \# x$ and $\alpha \# \Gamma_{s_{<x}}$ then $\alpha \#$ nlist (x).
(NC3) If y an O-move justified by z then $\operatorname{nlist}(y)=\operatorname{nlist}(z)$.
An $\vec{\alpha}$-play is a play with its first move having name-list $\vec{\alpha}$.

Plays: Examples

$$
\begin{array}{ll}
\boldsymbol{N}_{A} \longrightarrow N_{A} \Rightarrow N_{A} & \\
\beta & O Q \\
& P A \\
& O Q \\
& P A
\end{array}
$$

Plays: Examples

$$
N_{A} \longrightarrow N_{A} \Rightarrow N_{A}
$$

PA

Plays: Examples

$$
N_{A} \longrightarrow N_{A} \Rightarrow N_{A}
$$

PA

Plays: Examples

$$
N_{A} \longrightarrow N_{A} \Rightarrow N_{A}
$$

Plays: Examples

$$
N_{A} \longrightarrow N_{A} \Rightarrow N_{A}
$$

Strategies

An $\vec{\alpha}$-strategy σ is a prefix-closed and O-move-closed set of equivalence classes $[s]_{\vec{\alpha}}$ of $\vec{\alpha}$-plays, satisfying:

Strategies

An $\vec{\alpha}$-strategy σ is a prefix-closed and O-move-closed set of equivalence classes $[s]$ of $\vec{\alpha}$-plays, satisfying:

- If even-length $\left[s_{1} x_{1}\right],\left[s_{2} x_{2}\right] \in \sigma$ and $\left[s_{1}\right]=\left[s_{2}\right]$ then $\left[s_{1} x_{1}\right]=\left[s_{2} x_{2}\right]$. (determinacy)

Strategies

An $\vec{\alpha}$-strategy σ is a prefix-closed and O-move-closed set of equivalence classes $[s]$ of $\vec{\alpha}$-plays, satisfying:

- If even-length $\left[s_{1} x_{1}\right],\left[s_{2} x_{2}\right] \in \sigma$ and $\left[s_{1}\right]=\left[s_{2}\right]$ then $\left[s_{1} x_{1}\right]=\left[s_{2} x_{2}\right]$. (determinacy)
- If even-length $\left[s_{1} n_{1}^{\vec{\gamma}_{1}}\right] \in \sigma$, odd-length $\left[s_{2}\right] \in \sigma$ and $\left[\left\ulcorner s_{1}\right\urcorner\right]=\left[\left\ulcorner s_{2}\right\urcorner\right]$ then there exists $n_{2}^{\overrightarrow{\gamma_{2}}}$ such that $\left[s_{2} \vec{\gamma}_{2}^{\overrightarrow{\gamma_{2}}}\right] \in \sigma$ and $\left[\left\ulcorner s_{1} n_{1}^{\overrightarrow{\gamma_{1}}}\right]=\left[\left\ulcorner s_{2} n_{2}^{\overrightarrow{\gamma_{2}}}\right]\right.\right.$. (innocence)

Strategies

An $\vec{\alpha}$-strategy σ is a prefix-closed and O-move-closed set of equivalence classes [s] of $\vec{\alpha}$-plays, satisfying:

- If even-length $\left[s_{1} x_{1}\right],\left[s_{2} x_{2}\right] \in \sigma$ and $\left[s_{1}\right]=\left[s_{2}\right]$ then $\left[s_{1} x_{1}\right]=\left[s_{2} x_{2}\right]$. (determinacy)
- If even-length $\left[s_{1} n_{1}^{\vec{\gamma}_{1}}\right] \in \sigma$, odd-length $\left[s_{2}\right] \in \sigma$ and $\left[\left\ulcorner s_{1}\right\urcorner\right]=\left[\left\ulcorner s_{2}\right\urcorner\right]$ then there exists $n_{2}^{\overrightarrow{\gamma_{2}}}$ such that $\left[s_{2} \vec{\gamma}_{2}^{\overrightarrow{\gamma_{2}}}\right] \in \sigma$ and $\left[\left\ulcorner s_{1} n_{1}^{\vec{\gamma}_{1}}\right]=\left[\left\ulcorner s_{2} n_{2}^{\overrightarrow{\gamma_{2}}}\right]\right.\right.$. (innocence)
- If $\left[m^{\vec{\alpha}}\right] \in \sigma$ then there exists an answer n such that $\left[m^{\vec{\alpha}} n^{\vec{\alpha}}\right] \in \sigma$. (totality)

Strategies

An $\vec{\alpha}$-strategy σ is a prefix-closed and O-move-closed set of equivalence classes [s] of $\vec{\alpha}$-plays, satisfying:

- If even-length $\left[s_{1} x_{1}\right],\left[s_{2} x_{2}\right] \in \sigma$ and $\left[s_{1}\right]=\left[s_{2}\right]$ then $\left[s_{1} x_{1}\right]=\left[s_{2} x_{2}\right]$. (determinacy)
- If even-length $\left[s_{1} n_{1}^{\vec{\gamma}_{1}}\right] \in \sigma$, odd-length $\left[s_{2}\right] \in \sigma$ and $\left[\left\ulcorner s_{1}\right\urcorner\right]=\left[\left\ulcorner s_{2}\right\urcorner\right]$ then there exists $n_{2}^{\overrightarrow{\gamma_{2}}}$ such that $\left[s_{2} \vec{\gamma}_{2}^{\overrightarrow{\gamma_{2}}}\right] \in \sigma$ and $\left[\left\ulcorner s_{1} n_{1}^{\vec{\gamma}_{1}}\right]=\left[\left\ulcorner s_{2} n_{2}^{\overrightarrow{\gamma_{2}}}\right]\right.\right.$. (innocence)
- If $\left[m^{\vec{\alpha}}\right] \in \sigma$ then there exists an answer n such that $\left[m^{\vec{\alpha}} n^{\vec{\alpha}}\right] \in \sigma$. (totality)

An $\vec{\alpha}$-strategy σ on $A \rightarrow B$ is written $\sigma: A \rightarrow B$.

Strategies: Examples

$N_{A} \longrightarrow N_{A} \Rightarrow N_{A}$

Strategies: Examples

$N_{A} \longrightarrow N_{A} \Rightarrow N_{A}$

(not total)

Strategies: Examples

$N_{A} \longrightarrow N_{A} \Rightarrow N_{A}$

(not total)
$N_{A} \longrightarrow\left(N_{A} \Rightarrow N_{A}\right)_{\perp}$

$O Q$
PA
$O Q$
$P A$
$O Q$
PA

Strategies: Examples

$N_{A} \longrightarrow N_{A} \Rightarrow N_{A}$

(not total)
$N_{A} \longrightarrow\left(N_{A} \Rightarrow N_{A}\right)_{\perp}$

$(\llbracket \mid x:[A] \vdash \nu \alpha . \lambda y . \alpha \rrbracket)$

The category $\mathcal{V}_{\mathrm{t}}^{\vec{\alpha}}$

$$
\left.\begin{array}{rl}
s \text { an } \vec{\alpha} \text {-play of } A \rightarrow B \\
t \text { an } \vec{\alpha} \text {-play of } B \rightarrow C
\end{array}\right\} \quad \begin{aligned}
& \text { obtain } s ; t \text {, an } \vec{\alpha} \text {-play in } A \rightarrow C \text {, by: } \\
& \\
& \\
& \rightsquigarrow \text { composing and hiding } B \text {-moves } \\
& \\
& \rightsquigarrow \text { respecting Name Conditions }
\end{aligned}
$$

The category $\mathcal{V}_{\mathrm{t}}^{\vec{\alpha}}$

$\left.\begin{array}{l}s \text { an } \vec{\alpha} \text {-play of } A \rightarrow B \\ t \text { an } \vec{\alpha} \text {-play of } B \rightarrow C\end{array}\right\}$
obtain $s ; t$, an $\vec{\alpha}$-play in $A \rightarrow C$, by:
\rightsquigarrow composing and hiding B-moves
\rightsquigarrow respecting Name Conditions
$\left.\begin{array}{l}\sigma: A \rightarrow B \text { an } \vec{\alpha} \text {-strategy } \\ \tau: B \rightarrow C \text { an } \vec{\alpha} \text {-strategy }\end{array}\right\} \begin{aligned} & \text { obtain } \sigma ; \tau: A \rightarrow C \text {, an } \vec{\alpha} \text {-strategy, by } \\ & \text { composing compatible plays. }\end{aligned}$

The category $\mathcal{V}_{\mathrm{t}}^{\vec{\alpha}}$

$$
\left.\begin{array}{l}
s \text { an } \vec{\alpha} \text {-play of } A \rightarrow B \\
t \text { an } \vec{\alpha} \text {-play of } B \rightarrow C
\end{array}\right\}
$$

obtain $s ; t$, an $\vec{\alpha}$-play in $A \rightarrow C$, by:
\rightsquigarrow composing and hiding B-moves
\rightsquigarrow respecting Name Conditions
$\left.\begin{array}{l}\sigma: A \rightarrow B \text { an } \vec{\alpha} \text {-strategy } \\ \tau: B \rightarrow C \text { an } \vec{\alpha} \text {-strategy }\end{array}\right\} \begin{aligned} & \text { obtain } \sigma ; \tau: A \rightarrow C \text {, an } \vec{\alpha} \text {-strategy, by } \\ & \text { composing compatible plays. }\end{aligned}$

Let $\mathcal{V}_{\mathrm{t}}^{\vec{\alpha}}$ be the category of nominal arenas and $\vec{\alpha}$-strategies

The category $\mathcal{V}_{\mathrm{t}}^{\vec{\alpha}}$

$$
\left.\begin{array}{l}
s \text { an } \vec{\alpha} \text {-play of } A \rightarrow B \\
t \text { an } \vec{\alpha} \text {-play of } B \rightarrow C
\end{array}\right\}
$$

obtain $s ; t$, an $\vec{\alpha}$-play in $A \rightarrow C$, by:
\rightsquigarrow composing and hiding B-moves
\rightsquigarrow respecting Name Conditions
$\sigma: A \rightarrow B$ an $\vec{\alpha}$-strategy $\}$
$\tau: B \rightarrow C$ an $\vec{\alpha}$-strategy $\}$ obtain $\sigma ; \tau: A \rightarrow C$, an $\vec{\alpha}$-strategy, by composing compatible plays.

Let $\mathcal{V}_{t}^{\vec{\alpha}}$ be the category of nominal arenas and $\vec{\alpha}$-strategies

Note: Our intention is to translate each typed term $\vec{\alpha} \mid \Gamma \vdash M: A$ to an arrow $\llbracket \Gamma \rrbracket \rightarrow T \llbracket A \rrbracket$ in $\mathcal{V}_{\mathrm{t}}^{\vec{\alpha}}$.
\rightsquigarrow Accommodate name-addition and name-abstraction.

Properties of $\mathcal{V}_{\mathrm{t}}^{\vec{\alpha}}$

$\mathcal{V}_{t}^{\vec{\alpha}}$ is a symmetric monoidal category under \otimes, and is partially closed in the following sense.
For any object B, for any object A and any pointed object C there exists a bijection

$$
\Lambda_{A, C}^{B}: \mathcal{V}_{\mathrm{t}}^{\vec{\alpha}}(A \otimes B, C) \xrightarrow{\cong} \mathcal{V}_{\mathrm{t}}^{\vec{\alpha}}(A, B \stackrel{\cong}{\Rightarrow} C)
$$

natural in A, C.
Also, 1 is a terminal object and \otimes is a product constructor in $\mathcal{V}_{\mathrm{t}}^{\vec{\alpha}}$.

Properties of $\mathcal{V}_{\mathrm{t}}^{\vec{\alpha}}$

$\mathcal{V}_{t}^{\vec{\alpha}}$ is a symmetric monoidal category under \otimes, and is partially closed in the following sense.
For any object B, for any object A and any pointed object C there exists a bijection

$$
\Lambda_{A, C}^{B}: \mathcal{V}_{\mathrm{t}}^{\vec{\alpha}}(A \otimes B, C) \xrightarrow{\cong} \mathcal{V}_{\mathrm{t}}^{\vec{\alpha}}(A, B \stackrel{\sim}{\Rightarrow} C)
$$

natural in A, C.
Also, 1 is a terminal object and \otimes is a product constructor in $\mathcal{V}_{\mathrm{t}}^{\vec{\alpha}}$.
We can also extend \otimes to an infinite tensor product of pointed

$$
=\bigotimes_{i \in I} A_{i}
$$

The Store Equation

We view general references as an effect and formulate a monadic semantics for $\nu \rho$. If types A are translated to $\llbracket A \rrbracket$ then we require:

$$
\llbracket \mathbb{1} \rrbracket=1 \quad \llbracket \mathbb{N} \rrbracket=\mathbb{N} \quad \llbracket[A] \rrbracket=N_{A} \quad \llbracket A \otimes B \rrbracket=\llbracket A \rrbracket \otimes \llbracket B \rrbracket
$$

The Store Equation

We view general references as an effect and formulate a monadic semantics for $\nu \rho$. If types A are translated to $\llbracket A \rrbracket$ then we require:

$$
\begin{array}{lll}
\llbracket \mathbb{1} \rrbracket=1 & \llbracket \mathbb{N} \rrbracket=\mathbb{N} \quad \llbracket\left[A \rrbracket \rrbracket=N_{A}\right. & \llbracket A \otimes B \rrbracket=\llbracket A \rrbracket \otimes \llbracket B \rrbracket \\
\llbracket A \rightarrow B \rrbracket=\llbracket A \rrbracket \Rightarrow(\xi \Rightarrow \llbracket B \rrbracket \otimes \xi) & \xi=\bigotimes_{A}\left(N_{A} \Rightarrow \llbracket A \rrbracket\right)
\end{array}
$$

(SE)

- We need to solve (SE).

The Store Equation

We view general references as an effect and formulate a monadic semantics for $\nu \rho$. If types A are translated to $\llbracket A \rrbracket$ then we require:

$$
\begin{array}{lll}
\llbracket \mathbb{1} \rrbracket=1 & \llbracket \mathbb{N} \rrbracket=\mathbb{N} \quad \llbracket\left[A \rrbracket \rrbracket=N_{A}\right. & \llbracket A \otimes B \rrbracket=\llbracket A \rrbracket \otimes \llbracket B \rrbracket \tag{SE}\\
\llbracket A \rightarrow B \rrbracket=\llbracket A \rrbracket \Rightarrow(\xi \Rightarrow \llbracket B \rrbracket \otimes \xi) & \xi=\bigotimes_{A}\left(N_{A} \Rightarrow \llbracket A \rrbracket\right)
\end{array}
$$

- We proceed to solve (SE).

1. Use the categorical machinery of [SP82] for solving recursive domain equations, as adapted to games in [McC00].
2. Observe that $O b\left(\mathcal{V}_{\mathrm{t}}^{\vec{\alpha}}\right)$ is a cpo wrt subset ordering, and solve (SE) as a fixpoint equation in that cpo.

The Store Equation

We view general references as an effect and formulate a monadic semantics for $\nu \rho$. If types A are translated to $\llbracket A \rrbracket$ then we require:

$$
\begin{array}{lll}
\llbracket \mathbb{1} \rrbracket=1 & \llbracket \mathbb{N} \rrbracket=\mathbb{N} \quad \llbracket\left[A \rrbracket \rrbracket=N_{A}\right. & \llbracket A \otimes B \rrbracket=\llbracket A \rrbracket \otimes \llbracket B \rrbracket \tag{SE}\\
\llbracket A \rightarrow B \rrbracket=\llbracket A \rrbracket \Rightarrow(\xi \Rightarrow \llbracket B \rrbracket \otimes \xi) & \xi=\otimes_{A}\left(N_{A} \Rightarrow \llbracket A \rrbracket\right)
\end{array}
$$

- We proceed to solve (SE).

1. Use the categorical machinery of [SP82] for solving recursive domain equations, as adapted to games in [McC00].
2. Observe that $O b\left(\mathcal{V}_{t}^{\vec{\alpha}}\right)$ is a cpo wrt subset ordering, and solve (SE) as a fixpoint equation in that cpo.

Having solved (SE) we obtain a strong monad (T, η, μ, τ):

\mathcal{V}_{t} is a model of $\nu \rho$

The previous reasoning applies for all $\vec{\alpha}$, so we obtain a model

$$
\mathcal{V}_{\mathrm{t}} \triangleq\left\langle\mathcal{V}_{\mathrm{t}}^{\vec{\alpha}}, T^{\vec{\alpha}}\right\rangle_{\vec{\alpha} \in \mathrm{N}^{\#}}
$$

\mathcal{V}_{t} is a model of $\nu \rho$

The previous reasoning applies for all $\vec{\alpha}$, so we obtain a model

$$
\mathcal{V}_{\mathrm{t}} \triangleq\left\langle\mathcal{V}_{\mathrm{t}}^{\vec{\alpha}}, T^{\vec{\alpha}}\right\rangle_{\vec{\alpha} \in \mathbf{N}^{+}}
$$

\rightsquigarrow Name-abstraction:

$$
\frac{\vec{\alpha} \alpha \mid \Gamma \vdash M: B}{\vec{\alpha} \mid \Gamma \vdash \nu \alpha \cdot M: B} \quad \mapsto \quad \frac{\llbracket M \rrbracket: \llbracket \Gamma \rrbracket \rightarrow T \llbracket A \rrbracket}{\llbracket \nu \alpha \cdot M \rrbracket=\langle\alpha\rangle \llbracket M \rrbracket: \llbracket \Gamma \rrbracket \rightarrow T \llbracket A \rrbracket}
$$

\mathcal{V}_{t} is a model of $\nu \rho$

The previous reasoning applies for all $\vec{\alpha}$, so we obtain a model

$$
\mathcal{V}_{\mathrm{t}} \triangleq\left\langle\mathcal{V}_{\mathrm{t}}^{\vec{\alpha}}, T^{\vec{\alpha}}\right\rangle_{\vec{\alpha} \in \mathbb{N}^{\#}}
$$

\rightsquigarrow Name-abstraction:
$\frac{\vec{\alpha} \alpha \mid \Gamma \vdash M: B}{\vec{\alpha} \mid \Gamma \vdash \nu \alpha \cdot M: B} \quad \mapsto \quad \frac{\llbracket M \rrbracket: \llbracket \Gamma \rrbracket \rightarrow T \llbracket A \rrbracket}{\llbracket \nu \alpha \cdot M \rrbracket=\langle\alpha\rangle \llbracket M \rrbracket: \llbracket \Gamma \rrbracket \rightarrow T \llbracket A \rrbracket}$

$$
\llbracket \Gamma \rrbracket \xrightarrow{f} T \llbracket A \rrbracket
$$

\mathcal{V}_{t} is a model of $\nu \rho$

The previous reasoning applies for all $\vec{\alpha}$, so we obtain a model

$$
\mathcal{V}_{\mathrm{t}} \triangleq\left\langle\mathcal{V}_{\mathrm{t}}^{\vec{\alpha}}, T^{\vec{\alpha}}\right\rangle_{\vec{\alpha} \in \mathbf{N}^{+}}
$$

\rightsquigarrow Name-abstraction:

\mathcal{V}_{t} is a model of $\nu \rho(2)$

\rightsquigarrow Update:

$$
\frac{\llbracket M \rrbracket: \Gamma \rightarrow T N_{A} \quad \llbracket N \rrbracket: \Gamma \rightarrow T A}{\llbracket M:=N \rrbracket: \Gamma \xrightarrow{\lfloor\llbracket M \rrbracket, \llbracket N \rrbracket\rangle} T N_{A} \otimes T A \xrightarrow{\psi} T\left(N_{A} \otimes A\right) \xrightarrow{T \mathrm{upd}_{A}} T T 1 \xrightarrow{\mu} T 1}
$$

\mathcal{V}_{t} is a model of $\nu \rho(2)$

\rightsquigarrow Update:

$$
\frac{\llbracket M \rrbracket: \Gamma \rightarrow T N_{A} \quad \llbracket N \rrbracket: \Gamma \rightarrow T A}{\llbracket M:=N \rrbracket: \Gamma \xrightarrow{\lfloor\lfloor M \rrbracket, \llbracket N \rrbracket\rangle} T N_{A} \otimes T A \xrightarrow{\psi} T\left(N_{A} \otimes A\right) \xrightarrow{T u p d_{A}} T T 1 \xrightarrow{\mu} T 1}
$$

$$
\begin{array}{ll}
N_{A} \otimes \llbracket A \rrbracket & {\operatorname{upd} d_{A}}_{\longrightarrow}^{\longrightarrow} \\
\left(\alpha, i_{A}\right)^{\vec{\alpha}} & (\xi \Rightarrow 1 \otimes \xi)
\end{array}
$$

\mathcal{V}_{t} is a model of $\nu \rho(2)$

\rightsquigarrow Update:

$$
\frac{\llbracket M \rrbracket: \Gamma \rightarrow T N_{A} \quad \llbracket N \rrbracket: \Gamma \rightarrow T A}{\llbracket M:=N \rrbracket: \Gamma \xrightarrow{\llbracket \llbracket M \rrbracket, \mathbb{N}]\rangle} T N_{A} \otimes T A \xrightarrow{\psi} T\left(N_{A} \otimes A\right) \xrightarrow{\text { Tupd } d_{A}} T T 1 \xrightarrow{\mu} T 1}
$$

$$
N_{A} \otimes \llbracket A \rrbracket \xrightarrow{u^{4 p d_{A}}} T 1
$$

$$
(\alpha, \underbrace{(\xi)^{\vec{\alpha}}}_{*^{\alpha}}
$$

\mathcal{V}_{t} is a model of $\nu \rho(2)$

\rightsquigarrow Update:

$$
\frac{\llbracket M \rrbracket: \Gamma \rightarrow T N_{A} \quad \llbracket N \rrbracket: \Gamma \rightarrow T A}{\llbracket M:=N \rrbracket: \Gamma \xrightarrow{\llbracket \llbracket M \rrbracket, \mathbb{N}]\rangle} T N_{A} \otimes T A \xrightarrow{\psi} T\left(N_{A} \otimes A\right) \xrightarrow{\text { Tupd } d_{A}} T T 1 \xrightarrow{\mu} T 1}
$$

$$
N_{A} \otimes \llbracket A \rrbracket \xrightarrow{u^{4 p d_{A}}} T 1
$$

$$
\underbrace{\left(\alpha, i_{A}\right)^{\vec{\alpha}}}_{\substack{\circledast^{*} \overbrace{}^{*}}}
$$

\mathcal{V}_{t} is a model of $\nu \rho(2)$

\rightsquigarrow Update:

$$
\frac{\llbracket M \rrbracket: \Gamma \rightarrow T N_{A} \quad \llbracket N \rrbracket: \Gamma \rightarrow T A}{\llbracket M:=N \rrbracket: \Gamma \xrightarrow{\lfloor\llbracket M \rrbracket, \llbracket N \rrbracket\rangle} T N_{A} \otimes T A \xrightarrow{\psi} T\left(N_{A} \otimes A\right) \xrightarrow{T \mathrm{upd}_{A}} T T 1 \xrightarrow{\mu} T 1}
$$

$$
N_{A} \otimes \llbracket A \rrbracket \longrightarrow \quad \operatorname{upd}_{A}
$$

\mathcal{V}_{t} is a model of $\nu \rho(2)$

\rightsquigarrow Update:

$$
\frac{\llbracket M \rrbracket: \Gamma \rightarrow T N_{A} \quad \llbracket N \rrbracket: \Gamma \rightarrow T A}{\llbracket M:=N \rrbracket: \Gamma \xrightarrow{\llbracket \llbracket M \rrbracket, \mathbb{N}]\rangle} T N_{A} \otimes T A \xrightarrow{\psi} T\left(N_{A} \otimes A\right) \xrightarrow{\text { Tupd } d_{A}} T T 1 \xrightarrow{\mu} T 1}
$$

$$
N_{A} \otimes \llbracket A \rrbracket \longrightarrow \xrightarrow{\operatorname{upd}_{A}} T 1
$$

\mathcal{V}_{t} is a model of $\nu \rho(2)$

\leadsto Update:

$$
\frac{\llbracket M \rrbracket: \Gamma \rightarrow T N_{A} \quad \llbracket N \rrbracket: \Gamma \rightarrow T A}{\llbracket M:=N \rrbracket: \Gamma \xrightarrow{\llbracket \llbracket M \rrbracket, \mathbb{N}]\rangle} T N_{A} \otimes T A \xrightarrow{\psi} T\left(N_{A} \otimes A\right) \xrightarrow{\text { Tupd } d_{A}} T T 1 \xrightarrow{\mu} T 1}
$$

$$
N_{A} \otimes \llbracket A \rrbracket \xrightarrow{\operatorname{upd}_{A}} T 1
$$

$$
\underbrace{\left(\alpha, i_{A}\right)^{\vec{\alpha}}} \underbrace{\stackrel{\overbrace{*}^{\vec{\alpha}}}{*}}_{(*, \circledast)^{\vec{\alpha}}} \Rightarrow 1 \otimes \xi)
$$

\mathcal{V}_{t} is a model of $\nu \rho(2)$

\rightsquigarrow Update:

$$
\frac{\llbracket M \rrbracket: \Gamma \rightarrow T N_{A} \quad \llbracket N \rrbracket: \Gamma \rightarrow T A}{\llbracket M:=N \rrbracket: \Gamma \xrightarrow{\llbracket \llbracket M \rrbracket, \mathbb{N}]\rangle} T N_{A} \otimes T A \xrightarrow{\psi} T\left(N_{A} \otimes A\right) \xrightarrow{\text { Tupd } d_{A}} T T 1 \xrightarrow{\mu} T 1}
$$

$$
N_{A} \otimes \llbracket A \rrbracket \xrightarrow{\operatorname{upd}_{A}} T 1
$$

\mathcal{V}_{t} is a model of $\nu \rho(2)$

\leadsto Update:

$$
\frac{\llbracket M \rrbracket: \Gamma \rightarrow T N_{A} \quad \llbracket N \rrbracket: \Gamma \rightarrow T A}{\llbracket M:=N \rrbracket: \Gamma \xrightarrow{\llbracket \llbracket M \rrbracket, \mathbb{N}]\rangle} T N_{A} \otimes T A \xrightarrow{\psi} T\left(N_{A} \otimes A\right) \xrightarrow{\text { Tupd } d_{A}} T T 1 \xrightarrow{\mu} T 1}
$$

$$
N_{A} \otimes \llbracket A \rrbracket \longrightarrow \longrightarrow \operatorname{upd}_{A} \quad T 1
$$

\mathcal{V}_{t} is a model of $\nu \rho(3)$

\rightsquigarrow Dereferencing:

$$
\frac{\llbracket M \rrbracket: \llbracket \Gamma \rrbracket \rightarrow T N_{A}}{\llbracket!M \rrbracket: \llbracket \Gamma \rrbracket \xrightarrow{\llbracket M \rrbracket} T N_{A} \xrightarrow{T \operatorname{arf} f_{A}} T \Gamma A \rrbracket \xrightarrow{\mu} T \llbracket A \rrbracket}
$$

\mathcal{V}_{t} is a model of $\nu \rho(3)$

\rightsquigarrow Dereferencing:

$$
\begin{gathered}
\llbracket M \rrbracket: \llbracket \Gamma \rrbracket \rightarrow T N_{A} \\
{T N_{A} \xrightarrow{T \mathrm{drf}_{A}} T T \llbracket A \rrbracket \xrightarrow{\mu} T \llbracket A \rrbracket} } \\
N_{A} \xrightarrow{\operatorname{drf}_{A}} \begin{array}{c}
\vec{\alpha} \\
\alpha^{\vec{\alpha}}
\end{array} \quad(\xi \Rightarrow A \rrbracket \\
\end{gathered}
$$

\mathcal{V}_{t} is a model of $\nu \rho(3)$

\rightsquigarrow Dereferencing:

$$
\begin{aligned}
& \llbracket M \rrbracket: \llbracket \Gamma \rrbracket \rightarrow T N_{A} \\
& \llbracket!M \rrbracket: \llbracket \Gamma \rrbracket \xrightarrow{\llbracket M \rrbracket} T N_{A} \xrightarrow{T \mathrm{drf}_{A}} T T \llbracket A \rrbracket \xrightarrow{\mu} T \llbracket A \rrbracket \\
& N_{A} \xrightarrow{\operatorname{drf}_{A}} T \llbracket A \rrbracket \\
& \underbrace{\vec{\alpha}}_{*^{\vec{\alpha}}}
\end{aligned}
$$

\mathcal{V}_{t} is a model of $\nu \rho(3)$

\rightsquigarrow Dereferencing:

$$
\begin{aligned}
& \llbracket M \rrbracket: \llbracket \Gamma \rrbracket \rightarrow T N_{A} \\
& \llbracket!M \rrbracket: \llbracket \Gamma \rrbracket \xrightarrow{\llbracket M \rrbracket} T N_{A} \xrightarrow{T \mathrm{drf}_{A}} T T \llbracket A \rrbracket \xrightarrow{\mu} T \llbracket A \rrbracket \\
& N_{A} \xrightarrow{\mathrm{drf}_{A}} T \llbracket A \rrbracket
\end{aligned}
$$

\mathcal{V}_{t} is a model of $\nu \rho(3)$

\rightsquigarrow Dereferencing:

$$
\begin{aligned}
& \llbracket M \rrbracket: \llbracket \Gamma \rrbracket \rightarrow T N_{A} \\
& \llbracket!M \rrbracket: \llbracket \Gamma \rrbracket \xrightarrow{\llbracket M \rrbracket} T N_{A} \xrightarrow{T \mathrm{drf}_{A}} T T \llbracket A \rrbracket \xrightarrow{\mu} T \llbracket A \rrbracket \\
& N_{A} \xrightarrow{\operatorname{drf}_{A}} T \llbracket A \rrbracket \\
& \underbrace{(\xi \Rightarrow \overbrace{\vec{a}}^{*}}_{\alpha_{\alpha^{\vec{\alpha}}}^{\alpha^{\vec{\alpha}}}} \underset{*^{\vec{\alpha}}}{\llbracket A \rrbracket \otimes \xi)}
\end{aligned}
$$

\mathcal{V}_{t} is a model of $\nu \rho(3)$

\rightsquigarrow Dereferencing:

$$
\begin{aligned}
& \llbracket M \rrbracket: \llbracket \Gamma \rrbracket \rightarrow T N_{A} \\
& \llbracket!M \rrbracket: \llbracket \Gamma \rrbracket \xrightarrow{\llbracket M \rrbracket} T N_{A} \xrightarrow{T \mathrm{drf}_{A}} T T \llbracket A \rrbracket \xrightarrow{\mu} T \llbracket A \rrbracket \\
& N_{A} \xrightarrow{\operatorname{drf}_{A}} T \llbracket A \rrbracket \\
& \underbrace{\alpha^{\vec{\alpha}}} \underset{\underbrace{\alpha_{A}^{*}}_{i_{A}^{\vec{\alpha}}}}{\stackrel{\overbrace{\alpha}^{\alpha}}{*}} \underset{x^{\alpha}}{\llbracket A \rrbracket \otimes \xi)}
\end{aligned}
$$

\mathcal{V}_{t} is a model of $\nu \rho(3)$

\rightsquigarrow Dereferencing:

$$
\begin{aligned}
& \llbracket M \rrbracket: \llbracket \Gamma \rrbracket \rightarrow T N_{A} \\
& \llbracket!M \rrbracket: \llbracket \Gamma \rrbracket \xrightarrow{\llbracket M \rrbracket} T N_{A} \xrightarrow{T \mathrm{drf}_{A}} T T \llbracket A \rrbracket \xrightarrow{\mu} T \llbracket A \rrbracket \\
& N_{A} \xrightarrow{\operatorname{drf}_{A}} T \llbracket A \rrbracket
\end{aligned}
$$

\mathcal{V}_{t} is a sound model

We can show equational soundness.

$$
\llbracket M \rrbracket=\llbracket N \rrbracket \Longrightarrow M \lesssim N
$$

\mathcal{V}_{t} is a sound model

We can show equational soundness.

$$
\llbracket M \rrbracket=\llbracket N \rrbracket \Longrightarrow M \lesssim N
$$

- Do we also have completeness?

\mathcal{V}_{t} is a sound model

We can show equational soundness.

$$
\llbracket M \rrbracket=\llbracket N \rrbracket \Longrightarrow M \lesssim N
$$

- Do we also have definability?

\mathcal{V}_{t} is a sound model

We can show equational soundness.

$$
\llbracket M \rrbracket=\llbracket N \rrbracket \Longrightarrow M \lesssim N
$$

- Do we also have definability? No.

In the reduction calculus the treatment of the store follows a specific store-discipline; for example,

- If a store S is updated to S^{\prime} then the original store S is not accessible any more.

\mathcal{V}_{t} is a sound model

We can show equational soundness.

$$
\llbracket M \rrbracket=\llbracket N \rrbracket \Longrightarrow M \lesssim N
$$

- Do we also have definability? No.

In the reduction calculus the treatment of the store follows a specific store-discipline; for example,

- If a store S is updated to S^{\prime} then the original store S is not accessible any more. In strategies stores are treated as variables.

\mathcal{V}_{t} is a sound model

We can show equational soundness.

$$
\llbracket M \rrbracket=\llbracket N \rrbracket \Longrightarrow M \lesssim N
$$

- Do we also have definability? No.

In the reduction calculus the treatment of the store follows a specific store-discipline; for example,

- If a store S is updated to S^{\prime} then the original store S is not accessible any more. In strategies stores are treated as variables.
- When the store is asked a name, it either returns its value or it deadlocks; there is no third option.

\mathcal{V}_{t} is a sound model

We can show equational soundness.

$$
\llbracket M \rrbracket=\llbracket N \rrbracket \Longrightarrow M \lesssim N
$$

- Do we also have definability? No.

In the reduction calculus the treatment of the store follows a specific store-discipline; for example,

- If a store S is updated to S^{\prime} then the original store S is not accessible any more. In strategies stores are treated as variables.
- When the store is asked a name, it either returns its value or it deadlocks; there is no third option.
When Opponent asks the value of some name, Player is free to evade answering and play elsewhere.

Tidy strategies

We therefore restrict strategies by imposing tidiness conditions, obtaining thus tidy strategies.

Tidy strategies

We therefore restrict strategies by imposing tidiness conditions, obtaining thus tidy strategies.

```
An \(\vec{\alpha}\)-strategy \(\sigma\) is tidy if whenever odd-length \([s] \in \sigma\) then:
(TD1) If \(s\) ends in a store-Q \(\alpha^{\vec{\alpha}^{\prime}}\) then \([s x] \in \sigma\), with \(x\) being:
\(\rightsquigarrow\) either a store-A to \(\alpha^{\vec{\alpha}^{\prime}}\) introducing no new names,
\(\rightsquigarrow\) or a copy of \(\alpha^{\vec{\alpha}^{\prime}}\).
In particular, if \(\alpha \#\left\ulcorner s{ }^{-}\right.\)then the latter case holds.
(TD2) If \(\left[s \alpha^{\vec{\alpha}^{\prime}}\right] \in \sigma\) with \(\alpha^{\vec{\alpha}^{\prime}}\) a store-Q then \(\alpha^{\vec{\alpha}^{\prime}}\) is justified by last O-store-H in \(\ulcorner s\urcorner\).
(TD3) If \(\ulcorner s\urcorner=s^{\prime} \alpha_{(O)}^{\vec{\alpha}^{\prime}} \alpha_{(P)}^{\vec{\alpha}^{\prime}} t y\) with \(\alpha^{\vec{\alpha}^{\prime}}\) a store-Q then \([s y] \in \sigma\) with \(t y y\) forming a copycat.
```


Tidy strategies

We therefore restrict strategies by imposing tidiness conditions, obtaining thus tidy strategies.

An $\vec{\alpha}$-strategy σ is tidy if whenever odd-length $[s] \in \sigma$ then:
(TD1) If s ends in a store- $\mathrm{Q} \alpha^{\vec{\alpha}^{\prime}}$ then $[s x] \in \sigma$, with x being:
\rightsquigarrow either a store-A to $\alpha^{\vec{\alpha}^{\prime}}$ introducing no new names,
\rightsquigarrow or a copy of $\alpha^{\vec{\alpha}^{\prime}}$.
In particular, if $\alpha \#\left\ulcorner s{ }^{-}\right.$then the latter case holds.
(TD2) If $\left[s \alpha^{\vec{\alpha}^{\prime}}\right] \in \sigma$ with $\alpha^{\vec{\alpha}^{\prime}}$ a store-Q then $\alpha^{\vec{\alpha}^{\prime}}$ is justified by last O-store-H in $\ulcorner s\urcorner$.
(TD3) If $\ulcorner s\urcorner=s^{\prime} \alpha_{(O)}^{\vec{\alpha}^{\prime}} \alpha_{(P)}^{\vec{\alpha}^{\prime}} t y$ with $\alpha^{\vec{\alpha}^{\prime}}$ a store-Q then $[s y] \in \sigma$ with $t y y$ forming a copycat.

Let $\mathcal{T}^{\vec{\alpha}}$ be the subcategory of $\mathcal{V}_{t}^{\vec{\alpha}}$ with objects $\llbracket A \rrbracket$ and arrows tidy strategies

\mathcal{T} is a FA model

All relevant structure passes from $\mathcal{V}_{\mathrm{t}}^{\vec{\alpha}}$ to $\mathcal{T}^{\vec{\alpha}}$. Hence, $\mathcal{T}=\left\langle\mathcal{T}^{\vec{\alpha}}, T^{\vec{\alpha}}\right\rangle_{\vec{\alpha} \in \mathrm{N}^{\#}}$ is a sound model.

\mathcal{T} is a FA model

All relevant structure passes from $\mathcal{V}_{\mathrm{t}}^{\vec{\alpha}}$ to $\mathcal{T}^{\vec{\alpha}}$. Hence, $\mathcal{T}=\left\langle\mathcal{T}^{\vec{\alpha}}, T^{\vec{\alpha}}\right\rangle_{\vec{\alpha} \in \mathrm{N}^{\#}}$ is a sound model.

We call a strategy σ finitary iff it has a finite description.

> Let A, B be types and $\sigma: \llbracket A \rrbracket \rightarrow T \llbracket B \rrbracket$ be finitary. Then σ is definable.

\mathcal{T} is a FA model

All relevant structure passes from $\mathcal{V}_{\mathrm{t}}^{\vec{\alpha}}$ to $\mathcal{T}^{\vec{\alpha}}$. Hence, $\mathcal{T}=\left\langle\mathcal{T}^{\vec{\alpha}}, T^{\vec{\alpha}}\right\rangle_{\vec{\alpha} \in \mathrm{N}^{\#}}$ is a sound model.

We call a strategy σ finitary iff it has a finite description.

Let A, B be types and $\sigma: \llbracket A \rrbracket \rightarrow T \llbracket B \rrbracket$ be finitary. Then σ is definable.

We call an $\vec{\alpha}$-strategy $\sigma: 1 \rightarrow T \mathbb{N}$ observable iff, for some $\vec{\beta}$,

$$
\left[*^{\vec{\alpha}} *^{\vec{\alpha}} \circledast \circledast^{\vec{\alpha}}(0, \circledast)^{\vec{\alpha} \vec{\beta}}\right] \in \sigma
$$

and define the intrinsic preorder $\lesssim^{\vec{\alpha}} \subseteq \mathcal{T}^{\vec{\alpha}}(A, T B)$ around it.

$$
\llbracket M \rrbracket \lesssim \llbracket N \rrbracket \Longleftrightarrow M \lesssim N
$$

References

[AGM ${ }^{+}$04] Samson Abramsky, Dan Ghica, Andrzej Murawski, Luke Ong, and lan Stark. Nominal games and full abstraction for the nu-calculus. In Proceedings of LICS '04, 2004.
[GP99] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax involving binders. In Proceedings of LICS '99, 1999.
[HY99] Kohei Honda and Nobuko Yoshida. Game-theoretic analysis of call-by-value computation. TCS, 221(1-2):393-456, 1999.
[McC00] Guy McCusker. Games and full abstraction for FPC. Information and Computation, 160(1-2):1-61, 2000.
[Ong02] Luke Ong. Observational equivalence of third-order idealized algol is decidable. In Proceedings of LICS '02, 2002.
[Pit03] A. M. Pitts. Nominal logic, a first order theory of names and binding. Information and Computation, 186:165-193, 2003.
[PS93] A. M. Pitts and I. D. B. Stark. Observable properties of higher order functions that dynamically create local names, or: What's new? In Proc. 18th MFCS, 1993. LNCS 711.
[SP82] M. B. Smyth and G. D. Plotkin. The category-theoretic solution of recursive domain equations. SIAM Journal on Computing, 11(4):761-783, 1982.
[Tze07] Nikos Tzevelekos. Full abstraction for nominal general references. 2007. To be presented in LICS '07.
N Tzevelekos, FA for Nominal General References

