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Generalised folds for nested datatypes
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Abstract. Nested datatypes generalise regular datatypes in much the same way
that context-free languages generalise regular ones. Although the categorical se-
mantics of nested types turns out to be similar to the regular case, the fold
functions are more limited because they can only describe natural transforma-
tions. Practical considerations therefore dictate the introduction of a generalised
fold function in which this limitation can be overcome. In the paper we show how
to construct generalised folds systematically for each nested datatype, and show
that they possess a uniqueness property analogous to that of ordinary folds. As a
consequence, generalised folds satisfy fusion properties similar to those developed
for regular datatypes. Such properties form the core of an effective calculational
theory of inductive datatypes.
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1. Introduction

A nested datatype is a parametrised inductive datatype whose declaration in-
volves a change to the accompanying type parameter(s). In other words, the
recursion is “nested” within a change of parameter. A formal definition is given
in Section 3. Such types have also been called non-regular or non-uniform.

A simple example is provided by the type Pow of power trees, declared in
Haskell by:

data Pow a = Zero a | Succ (Pow (Pair a))
type Pair a = a × a

(We have varied the syntax slightly, writing a×a where Haskell would use (a, a).)
Elements of Pow a consist of pairs of pairs of pairs . . . of values of type
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a, where the depth of nesting is given by reading the associated constructor
expression as a Peano numeral. For example,

Succ (Succ (Zero ((1, 2), (3, 4))))

is a power tree of height 2. Each element therefore represents a perfectly balanced
binary tree with labels in the leaves.

As this example suggests, nested datatypes can capture certain structural
invariants in a way that regular datatypes cannot. Connelly and Lockwood Mor-
ris [CL95] use a nested type for modelling a generalisation of the trie data struc-
ture, and Okasaki [Oka98] puts nested datatypes to a variety of uses in the
design of purely functional data structures. Bird and Paterson [BP99] use a
nested datatype to describe de Bruijn notation for lambda expressions. Other
examples of datatypes that have been shown very recently to be expressible by
nested declarations include AVL trees, 2-3 trees, and square matrices.

The aim of this paper is to lay the groundwork for a useful calculational
theory of nested datatypes; the work can be regarded as a successor to [BM98].
The categorical semantics is straightforward, but there is a complication. For a
regular datatype, the fold function induced by initiality is a useful tool in the
construction of practical programs. In nested datatypes, it isn’t. The basic reason
is that the argument of the fold is required to be a natural transformation, and
the result of the fold is also a natural transformation. Consequently, functions
that inspect the elements of a nested datatype cannot be defined as folds. This
phenomenon motivates the introduction of a generalised fold operator in which
these limitations can be overcome. The first contribution of the paper is to show
how to define a generalised fold operator for each nested type.

In the calculational theory of regular inductive datatypes, everything hinges
on the uniqueness property of the fold function: the fold is the unique function of
its type satisfying a certain functional equation. From this flow the fusion laws of
fold; such laws are of fundamental importance in reasoning about programs and
improving their efficiency (see, e.g. [Bir98, Mal90b]). The second contribution of
the paper is to show that generalised folds also possess a uniqueness property.

Having established the uniqueness property, we can set up appropriate fusion
laws for reasoning about nested datatypes. The third contribution in this paper
is to present such laws, and to discuss some of their consequences.

The rest of the paper is organised as follows. In Sections 2 and 3 we briefly
review the standard theory of regular datatypes, and show how the theory ex-
tends to nested datatypes. These sections also contain the formal definitions of
regular and nested datatypes. In Section 4 we introduce the generalised folds,
and in Section 5 we present the fusion laws. In Section 6 we will justify our proofs
of the fusion laws by showing that generalised folds are uniquely determined by
their defining equations. Familiarity with basic category theory is assumed.

2. Semantics of non-parametrised datatypes

In a categorical setting, non-parametrised inductive datatypes are introduced
by taking categorical least fixed points of appropriate functors (see e.g. [Lam70,
BdM97, Hag87, Mal90a, MA86]). Given a suitable category C, the least fixed
point of a functor F :: C → C, if it exists, is an object T of C for which the arrow
α :: F T → T is an initial algebra in the category of F -algebras. The objects
of this category are arrows F A → A of C, and the arrows are homomorphisms
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between algebras. Thus, for objects f :: F A → A and g :: F B → B , an arrow
h :: f → g is an arrow h :: A → B of C such that h · f = g · F h.

The initiality of α means that to each algebra f :: F A → A there is associated
a unique homomorphism h :: α → f , that is a function h :: T → A satisfying the
equation

h · α = f · F h.

The unique homomorphism h is denoted by fold f . It is a consequence of initiality
that α is an isomorphism, whence T ∼= F T ; this explains the terminology ‘fixed
point’.

One class of appropriate functors are the polynomial functors. In a category
C with products and coproducts, the polynomial functors F :: Cn → C are
defined by the following grammar:

F ::= An | + | × | Πn

i | F · 〈F1, . . . ,Fn〉

The functor An is an n-ary constant functor, delivering the type A for all ar-
guments. The functor Πn

i
is an n-ary projection, selecting its ith argument. A

special case is Id = Π1
1. The superscripts n will be omitted in the rest of the

paper. The functor F · 〈F1, . . . ,Fn〉 denotes the composition of an n-ary functor
F with n functors Fi , all of the same arity, so that

(F · 〈F1, . . . ,Fn〉)A1 . . . Am = F (F1 A1 . . . Am) . . . (Fn A1 . . . Am)

We omit the brackets when n = 1. We also write F + G for + · 〈F ,G〉 and
similarly F ×G .

Provided the category C has colimits of all countable chains (the category
Set of sets and total functions is an example), every unary polynomial functor
possesses a least fixed point.

As examples, we can introduce the datatype Nat of natural numbers as the
least fixed point of F = 1 + Id , lists of natural numbers as the least fixed point
of F = 1 + Nat × Id , and binary trees, with natural number labels, as the least
fixed point of F = 1 + Nat × Id × Id .

Such declarations can be translated into Haskell fairly directly. For example,
the datatype of lists of natural numbers can be declared by

data NatListF a = Nil | Cons (Nat × a)
newtype NatList = In (NatListF NatList)

The data declaration introduces the polynomial functor NatListF , and the
newtype declaration introduces NatList as isomorphic to NatListF NatList . In
Haskell, both type variables and type constructor variables are denoted using
lower-case letters.

In general, Haskell programs may fail to terminate, so these datatypes con-
ceptually include an additional ‘value’ representing non-termination, and the
language defines how non-termination propagates through an expression. How-
ever, we shall be using a subset of Haskell in which all programs terminate, so
that this is not an issue, and our programs may be modelled in our category C.
This means that we cannot use unrestricted recursion; we must show that any
recursive definitions we use have unique solutions. An additional restriction in
comparison with Haskell is that recursively defined types in this paper do not
involve function types, so we are concerned solely with inductive types.

The constructor In corresponds to the initial algebra α. The converse function
α−1 is given by the function out , defined in Haskell by
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out :: NatList → NatListF NatList
out (In x ) = x

The type of lists of natural numbers can also be declared by

data NatList = Nil | Cons (Nat ×NatList)

In this version, which is closer to the usual style of datatype declaration in func-
tional programming, the polynomial functor NatListF does not appear explicitly.

The function fold may be defined in Haskell as follows:

fold :: (NatListF a → a) → NatList → a
fold f = f · natlistF (fold f ) · out

In Haskell, a free type variable, like a, is implicitly universally quantified, and
may be instantiated to any type.

The function natlistF is the functorial action of NatListF :

natlistF :: (a → b) → NatListF a → NatListF b
natlistF f Nil = Nil
natlistF f (Cons (n, x )) = Cons (n, f x )

For example, sumNL = fold sumF sums a list, where

sumF :: NatListF Nat → Nat
sumF Nil = 0
sumF (Cons (m,n)) = m + n

3. Semantics of parametrised datatypes

Next, we consider the extension of this theory to parametrised datatypes, like
the following Haskell definition for lists:

data List a = Nil | Cons (a × List a)

As before, this may be rewritten in the equivalent form

data Base a b = Nil | Cons (a × b)
newtype List a = In (Base a (List a))

To incorporate parametrised datatypes into the theory, one can proceed in essen-
tially two different ways. The first method is standard, but the second extends to
nested constructors. For simplicity, we will consider only datatypes parametrised
by a single type variable; the extension to multiple parameters is straightforward.

3.1. First method: families of fixed points

The first method takes the fixed point of a binary functor B with respect to its
second parameter. We begin with the observation that the partial application of
a binary functor B to a type A yields a unary functor B A, whose least fixed
point T A can be constructed in the usual way. Then for each A there is an
associated initial algebra αA of type

αA :: B A (T A) → T A.
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The associated fold function takes an algebra f :: B AY → Y as argument, and
is uniquely defined by the assertion that for any arrow h :: T A → Y , we have
h = fold f if and only if

h · αA = f · B id h.

The datatype constructor T can be made into a functor by defining T f :: T X →
T Y for an arrow f :: X → Y by

T f = fold (αY · B f id).

Restated, this definition takes the form

T f · αX = αY · B f (T f ).

Hence α is a natural transformation from B · 〈Id ,T 〉 to T .
The class of regular functors is defined as the closure of the class of polynomial

bifunctors under least fixed point operations. For example, List is the least fixed
point of a bifunctor B = 1 + Π1 × Π2, and the general tree constructor Tree is
the least fixed point of a bifunctor B = Π1 × (List ·Π2).

For the List datatype constructor, the fold function is implemented by

fold :: (Base a b → b) → List a → b
fold f = f · base id (fold f ) · out

where the function base implements the functorial action of Base:

base :: (a → c) → (b → d) → Base a b → Base c d
base f g Nil = Nil
base f g (Cons (x , y)) = Cons (f x , g y)

Though it is defined in a slightly different way than usual, the function fold is
essentially the same as the standard function foldr in functional programming.
The functorial action of List (corresponding to the standard function map) may
be defined using fold :

list :: (a → b) → List a → List b
list f = fold (In · base f id)

3.2. Second method: higher-order fixed points

The second method yields a larger class of datatype constructors. Instead of
constructing fixed points in the category C, we will work in the functor categories
Cn → C. The objects of Cn → C are n-ary functors over C, and the arrows are
natural transformations between functors. We shall write F → G for the set of
natural transformations from F to G .

In this category, limits and colimits may be constructed pointwise from limits
and colimits in C [Mac71, V.3]. For example, the shorthand notations F × G
and F + G do in fact denote products and coproducts in this category3.

Moreover, we can define a functor T :: Cn → C as a fixed point of a suit-
able higher-order functor F :: (Cn → C) → (Cn → C), via the same colimit
construction used in C. We shall refer to such functors as hofunctors. As before,

3 Everything we do here generalises in a straightforward way to functor categories D → C,
for an arbitrary category D.
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this means that α :: F T → T is an initial object in the category of F -algebras.
Note that α is a natural transformation by construction. Hence, for f :: A → B ,
we have

T f · αA = αB · F T f .

The fold function induced by the initiality of α associates with each natural
transformation f :: F N → N , for some given functor N , a natural transforma-
tion hfold f :: T → N defined as the unique function h satisfying

h · α = f · F h.

This is exactly the same definition as for fold on unparametrised datatypes, but
installed at a higher level. One major difference though is that the functoriality
of T is given by construction, not as an instance of the fold.

We define the class of polynomial hofunctors of the form F X = P , where P
is a polynomial functor expression that may also include the functor variable X .
The grammar for such functor expressions is

P ::= An | + | × | Πn

i | P · 〈P1, . . . ,Pn〉 | X

A fixed point of a polynomial hofunctor is called a nested functor4. We consider
three examples.

Example 3.1 The functor List is given as the least fixed point of the polynomial
hofunctor ListF X = 1 + Id × X . Thus List is a nested functor which is also a
regular functor. In Haskell, the type constructor List may be introduced by the
declarations

data Base a b = Nil | Cons (a × b)
type ListF x a = Base a (x a)
newtype List a = In (ListF List a)

The type declaration introduces ListF x a as a synonym for Base a (x a). The
type constructor List is therefore exactly the same as before.

However, the fold function is different. This function may be expressed in
Haskell as follows:

hfold :: (∀ a.ListF n a → n a) → List b → n b
hfold f = f · listF (hfold f ) · out

The function listF expresses part of the functorial action of ListF : for each
natural transformation f :: X → Y , we have listF f :: ListF X → ListF Y . In
Haskell, we have

listF :: (∀ a. x a → y a) → ListF x b → ListF y b
listF f = base id f

The first arguments of hfold and listF are polymorphic functions, described using
a rank 2 type signature [McC84]. Such signatures are allowed in recent exten-
sions to Haskell [Jon98, PL97]. Polymorphic functions correspond to natural
transformations in a categorical setting.

The definition of hfold is equivalent to the earlier definition of the regular
fold , but has a different type: the new version takes natural transformations to

4 Though we deal only with single recursive definitions here, our results could be extended to
systems of multiple simultaneous definitions.
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natural transformations. As a result, the new fold is less useful because individual
list elements can never be inspected.

For example, if a fold is to produce a natural number, we would have to
take N = Nat , the constant functor that returns Nat on every type, so that
hfold f :: List → Nat . This function will operate on lists of any type, and must
satisfy the naturality property

hfold f = hfold f · list k

for any function k , and thus cannot depend on elements of the list. We can define
the length function, but little more. In the following section we will see how to
overcome this limitation.

We have noted above that a functor List is introduced automatically as part
of the categorical semantics, but we have not yet defined its functorial action list
in Haskell. An inductive argument establishes that list is uniquely determined
by the naturality of In :: ListF List → List . To express this naturality condition,
we could extend the definition of listF given above to the full functorial action
of ListF , or simply expand ListF in the definition of List , yielding the definition

list :: (a → b) → List a → List b
list f = In · base f (list f ) · out

This is equivalent to the definition using fold at the end of the previous section.
Note, however, that list cannot be defined using hfold .

Example 3.2 The type constructor Nest is defined as the least fixed point of

NestF X = 1 + Id × (X · Pair).

In Haskell the corresponding declarations are:

data Base a b = Nil | Cons (a × b)
type NestF x a = Base a (x (Pair a))
type Pair a = a × a
newtype Nest a = In (NestF Nest a)

An equivalent datatype is introduced by the ‘flattened’ declaration

data Nest a = Nil | Cons (a ×Nest (a × a))

Unlike List , the datatype constructor Nest is not a regular functor: occurrences
of Nest in its defining expression are “nested” within a change of type parameter
from a to Pair a. In effect, values of type Nest a correspond to lists in which the
first element has type a, the second element has type (a × a), the third has type
((a × a)× (a × a)), and so on. A variant of Nest was used in [Oka98] as a basis
for an implementation of lists with an efficient indexing operation.

The fold function for Nest may be implemented in Haskell by expanding
NestF in terms of the bifunctor Base:

hfold :: (∀ a.Base a (n (Pair a)) → n a) → Nest b → n b
hfold f = f · base id (hfold f ) · out

Similarly, the mapping function nest may be defined by
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nest :: (a → b) → Nest a → Nest b
nest f = In · base f (nest (pair f )) · out

pair :: (a → b) → Pair a → Pair b
pair f (x , y) = (f x , f y)

Unlike the case of List , the naturality of the argument f in hfold f is crucial to
the definition. The recursive occurrence of hfold f in its defining expression is
applied to elements of type Nest (Pair a); consequently, f must have type

f :: Base (Pairk b) (n (Pairk+1 b)) → n (Pairk b)

for all k ≥ 0. The type signature of f in the definition of hfold generalises this
requirement by making f fully polymorphic.

Note that in the definition of Nest , the parameters of the recursive use do not
themselves contain a use of Nest . We call such nested datatypes linear; almost
all of the known practical examples of nested datatypes belong to this class. For
an exception, see Section 5 of [BP99]. Our final example is a non-linear variant
of Nest .

Example 3.3 The type functor Host may be defined as the least fixed point of

HostF X = 1 + Id × (X · (Id ×X )),

The Haskell declaration is:

data Base a b = Nil | Cons (a × b)
type HostF x a = Base a (x (a × x a))
newtype Host a = In (HostF Host a)

This datatype is equivalent to the flattened version

data Host a = Nil | Cons (a ×Host (a ×Host a))

In effect, values of type Host a correspond to lists in which the first element is
of type a, the second element is of type a ×Host a, the third element is of type

(a ×Host a)×Host (a ×Host a),

and so on. We know of no practical use for this datatype.
The fold and map functions may be implemented by

hfold :: (∀ a.Base a (n (a × n a)) → n a) → Host b → n b
hfold f = f · base id (hfold f · host (id × hfold f )) · out

host :: (a → b) → Host a → Host b
host f = In · base f (host (f × host f )) · out

× :: (a → c) → (b → d) → a × b → c × d
(f × g) (x , y) = (f x , g y)

The functions host and × implement the functorial actions of Host and ×, re-
spectively.



Generalised folds for nested datatypes 9

4. Generalised folds

A simple fold takes as argument a natural transformation f :: F N → N and
returns a natural transformation of type T → N . Its definition has the form

hfold f · α = Ψ(hfold f )

where the form Ψ :: (T → N ) → F T → N is defined by Ψ h = f · F h.
Greater flexibility is achieved if we generalise the fold to return a natural

transformation of type T ·M → N . For example, both M and N could be taken
to be the constant functor that returns the type of integers. Then we would have
a way of reducing a T -structure of integers to a single integer. The generalised
fold will take as arguments a series of natural transformations f , g1, . . . , gm , to
be introduced below. A generalised fold

gfold f g1 · · · gm :: T ·M → N

will be defined by an equation of the form

gfold f g1 · · · gm · α = Ψ(gfold f g1 · · · gm)

for some form Ψ :: (T ·M → N ) → F T ·M → N . To develop this operator Ψ,
observe that every polynomial hofunctor F can be expressed in the form

F X = B · 〈Id ,X · F1 X , . . . ,X · Fn X 〉

for some n ≥ 0 (if n = 0, then F X = B · Id = B). The subsidiary hofunctors Fi

may be decomposed similarly5.
For example, in the case of List , Nest , or Host , the functor B is given by

B X Y = 1 + X ×Y .

Now for h :: T ·M → N , we require (expanding F T ·M ):

Ψ h :: B · 〈M ,T · F1 T ·M , . . . ,T · Fn T ·M 〉 → N .

The component types T · Fi T · M are not suitable for arguments to h, so we
introduce auxiliary forms Φ[Fi ] h :: Fi T ·M → M · Fi N , to be defined below.
Then we have

h · T (Φ[Fi ] h) :: T · Fi T ·M → N · Fi N

and we can define

Ψ h = f · B id (h · T (Φ[F1] h)) · · · (h · T (Φ[Fn ] h))

for some natural transformation

f :: B · 〈M ,N · F1 N , . . . ,N · Fn N 〉 → N

which must be supplied as a parameter to gfold .
It remains to define Φ[F ]h, which we do inductively on the form of F . For

F X = B · 〈Id ,X · F1 X , . . . ,X · Fn X 〉, we define

Φ[F ]h = g · B id (h · T (Φ[F1]h)) · · · (h · T (Φ[Fn ]h))

for some natural transformation

g :: B · 〈M ,N · F1 N , . . . ,N · Fn N 〉 → M · F N .

5 There may be several such decompositions, each giving rise to a different definition of gfold .
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Each natural transformation g arising in this way is provided as an extra pa-
rameter to gfold .

Note that in the special case M = Id , we can set each g = id , obtaining the
simple fold as a special case:

hfold f = gfold f id · · · id .

Another special case arises when both M and N are constant functors; the
associated instance of gfold is called a reduction.

Let us now consider the detailed instantiations for each of our three example
datatypes.

Example 4.1 For List we have List = F List , where

F X = Base · 〈Id ,X · F1 X 〉

F1 X = Id .

The generalised fold therefore takes the following form in Haskell:

gfold :: (∀ a.Base (m a) (n a) → n a) →
(∀ a.m a → m a) →
List (m b) → n b

gfold f g = f · base id (gfold f g · list g) · out

Of the two additional ingredients, M and g , it is the presence of the functor
M that is the crucial one; the second argument g is useful but its effect can be
achieved by other means. The point about M is that it provides greater freedom
of manoeuvre.

As noted above, we can take both M and N to be constant functors, deliv-
ering, say, the types x and y respectively. Then the associated instance of gfold
is a reduction of type

reduce :: (Base x y → y) → (x → x ) → List x → y .

Viewing f :: Base x y → y as a pair e :: y and ⊕ :: x × y → y , the effect of
reduce f g on a list [a0, . . . , an ] is to produce the value

a0 ⊕ (g a1 ⊕ (g2 a2 ⊕ · · · (gn an ⊕ e) · · ·)).

The regular fold is the special case of a list reduction in which g = id . List reduc-
tions are an important component of the circuit design language Ruby [JS93];
see also [BdM97].

This analysis of reductions suggests that a generalised fold over lists can
be decomposed into a simple fold after a triangle. The triangle with respect to
a function g takes [a0, a1, . . . , an ] to [a0, g a1, . . . , g

n an ]. This function can be
expressed as a fold:

triangle :: (a → a) → List a → List a

triangle g = fold (In · base id (list g)).

The claim is that

gfold f g = fold f · triangle g .

This result will be proved in the following section. In fact, for regular datatypes,
we can always decompose a generalised fold into the composition of two regular
folds in this way.
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Example 4.2 For Nest we have Nest = F Nest , where

F X = Base · 〈Id ,X · F1 X 〉

F1 X = Pair .

The generalised fold therefore has the following form in Haskell:

gfold :: (∀ a.Base (m a) (n (Pair a)) → n a) →
(∀ a.Pair (m a) → m (Pair a)) →
Nest (m b) → n b

gfold f g = f · base id (gfold f g · nest g) · out

If we take M and N to be constant functors, delivering types x and y respectively,
then we obtain an instance of gfold , again called a reduction, with type:

reduce :: (Base x y → y) → (Pair x → x ) → Nest x → y

In particular, we can sum a nest of integers by sumN = reduce sumB plus, where
plus (m,n) = m + n and

sumB :: Base Int Int → Int
sumB Nil = 0
sumB (Cons (m,n)) = m + n

A nest of integers cannot be summed using a fold over nests (at least, not simply)
because sumB is not a natural transformation of the right type. The summation
function can be defined using a generalised fold because every function between
two given types lifts to a natural transformation between constant functors.

Example 4.3 For Host we have Host = F Host , where

F X = Base · 〈Id ,X · F1 X 〉

F1 X = × · 〈Id ,X · F2 X 〉

F2 X = Id .

The generalised fold therefore has the following form in Haskell:

gfold :: (∀ a.Base (m a) (n (a × n a)) → n a) →
(∀ a.m a × n a → m (a × n a)) →
(∀ a.m a → m a) →
Host (m b) → n b

gfold f g1 g2 = f · base id (gfold f g1 g2 ·
host (g1 · id × (gfold f g1 g2 · host g2))) · out

Taking M and N to be constant functors, delivering types x and y respectively,
we can define a reduction over Host as an instance of gfold with type

reduce :: (Base x y → y) → (x × y → x ) → (x → x ) → Host x → y

In particular, we can sum a host of integers by sumH = reduce sumB plus id ,
using the functions sumB and plus defined above.

4.1. Remarks

As we have defined them, generalised folds can be criticised from two opposing
points of view. One can argue that our folds are too general in that arguments
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of type M → M could be dropped, since it is not clear what they contribute. On
the other hand, one can also argue that our folds are too specific. For example,
it is quite possible to assign the following type signature to the above definition
of gfold for Host :

gfold :: (∀ a.Base (m a) (n (p a)) → n a) →
(∀ a.m a × n (q a) → m (p a)) →
(∀ a.m a → m (q a)) →
Host (m b) → n b

The idea is that gfold f g h :: Host (m b) → n b is a natural transformation, and
different instances may be instantiated at different types, reflected by the type
constructors q and p. The previous type of gfold is then the instance in which
q a = a and p a = a × n a.

Even more generally, we can recall that the generalised fold is defined as the
unique solution of an equation

x · α = Ψ x .

We can use any form Ψ :: (T ·M → N ) → (F T ·M → N ) for which this equation
has a unique solution. As we shall see in Section 6, it suffices that Ψ is defined
in such a way that any functor may be used in place of T . In particular, Ψ may
not use α or α−1 to build or dismantle values of type T . We write

Ψ :: ∀X . (X ·M → N ) → (F X ·M → N ).

Thus Ψ is a natural transformation between two contravariant functors.
As always, the more general forms have more degrees of freedom, but conse-

quently offer less guidance to the program designer. We have found the version
described in this section, with associated fusion laws presented below, to be a
reasonable compromise in practice [BP99]. However, more experience is needed
to determine which of the formulations turn out to be the most useful in practical
program construction.

5. Fusion laws

The fusion laws for a nested datatype T come in two flavours: fold-fusion and
map-fusion. The former provides conditions under which

k · gfold f g1 · · · gm = gfold f ′ g ′1 · · · g
′

m .

The map-fusion law is similar, providing conditions under which

gfold f g1 · · · gm · T k = gfold f ′ g ′1 · · · g
′

m .

In the standard theory of regular datatypes, map-fusion is a special case of fold-
fusion because the functorial action of regular datatypes can be defined as a fold.
This is not the case with the higher-order semantics of Section 3.

In deriving the fusion laws, we shall assume that gfold f ′ g ′1 · · · g
′

m is the unique
function h ′ satisfying its defining equation. This assumption will be justified in
Section 6.

As in the previous section, we suppose α :: F T → T , where

F X = B · 〈Id ,X · F1 X , . . . ,X · Fn X 〉.
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To reduce clutter, we show the calculations only for the case n = 1; the general-
isation is straightforward.

The map-fusion law is dealt with first.

5.1. Map-fusion laws

Abbreviating gfold f g1 · · · gm to h, and gfold f ′ g ′1 · · · g
′

m to h ′, our aim is to give
conditions under which h · T k = h ′, where k :: M ′ → M . As noted above, we
assume that h ′ is the unique function of type T ·M ′ → N satisfying

h ′ · α = Ψ′ h ′,

where Ψ′ is obtained by replacing each f and gi in Ψ with the corresponding f ′

or g ′
i
. Hence it is sufficient to give conditions under which

h · T k · α = Ψ′ (h · T k).

The general scheme is given by the following calculation:

h · T k · α

= {naturality of α}

h · α · B k (T (F1 T k))

= {definition of h}

f · B id (h · T (Φ[F1]h)) · B k (T (F1 T k))

= {functoriality of B}

f · B k (h · T (Φ[F1]h) · T (F1 T k))

= {functoriality of T}

f · B k (h · T (Φ[F1]h · F1 T k))

= {assume Φ[F1]h · F1 T k = k · Φ′[F1](h · T k)}

f · B k (h · T (k · Φ′[F1](h · T k)))

= {functoriality of T}

f · B k (h · T k · T (Φ′[F1](h · T k)))

= {functoriality of B}

f · B k id · B id (h · T k · T (Φ′[F1](h · T k)))

= {assume f ′ = f · B k id}

f ′ · B id (h · T k · T (Φ′[F1](h · T k)))

= {definition}

Ψ′ (h · T k).

The first assumption in this calculation is the condition

Φ[F1]h · F1 T k = k · Φ′[F1](h · T k),

which can be simplified using the inductive definitions of Φ and Φ′ with a similar
calculation. Eventually we will arrive at subforms that are independent of h,
having generated a series of side-conditions. We will spell out the details for our
three example datatypes.
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Example 5.1 For List , we have Φ[F1]h = g :: M → M and F1 List = Id . Since
Φ′[F1](h · list k) = g ′ :: M ′ → M ′, we obtain

Map-fusion law for List.

gfold f g · list k = gfold (f · base k id) g ′ ⇐ g · k = k · g ′.

Taking the special case g = id and g ′ = id , we have

fold f · list k = fold (f · base k id).

Example 5.2 For Nest , we have Φ[F1]h = g :: Pair · M → M · Pair and
F1 Nest = Pair . Since Φ′[F1](h · nest k) = g ′ :: Pair ·M ′ → M ′ ·Pair , we obtain

Map-fusion law for Nest.

gfold f g · nest k = gfold (f · base k id) g ′ ⇐ g · pair k = k · g ′.

Example 5.3 For Host , we have

Φ[F1]h = g1 · id × (h · host g2)

Φ′[F1](h · host k) = g ′1 · id × (h · host k · host g ′2),

where g1 :: M × N → M · (Id × N ) and g2 :: M → M . The types of g ′1 and g ′2
are similar, except that M is replaced by M ′. Since F1 Host k = k × host k , the
condition for map-fusion takes the form

g1 · id × (h · host g2) · k × host k = k · g ′1 · id × (h · host k · host g ′2)

or equivalently

g1 · k × id · id × (h · host (g2 · k)) = k · g ′1 · id × (h · host (k · g ′2)).

This equation follows from g1 · k × id = k · g ′1 and g2 · k = k · g ′2. Hence

Map-fusion law for Host.

gfold f g1 g2 · host k = gfold (f · base k id) g ′1 g ′2

⇐ g1 · k × id = k · g ′1 ∧ g2 · k = k · g ′2.

5.2. Fold-fusion laws

Again abbreviating gfold f g1 · · · gm to h and gfold f ′ g ′1 · · · g
′

m to h ′, our aim is
to give conditions under which k · hM ′ = h ′, where k :: N ·M ′ → N ′. As before,
it is sufficient to give conditions under which

k · h · α = Ψ′ (k · h).

The general scheme is given by the following calculation:

k · h · α

= {definition of h}

k · f · B id (h · T (Φ[F1] h))

= {assume k · f = f ′ · B id (k · N p1) for some p1}
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f ′ · B id (k ·N p1) · B id (h · T (Φ[F1] h))

= {functoriality of B}

f ′ · B id (k ·N p1 · h · T (Φ[F1] h))

= {naturality of h :: T ·M → N , and functoriality of T}

f ′ · B id (k · h · T (M p1 · Φ[F1] h))

= {assume M p1 · Φ[F1]h = Φ′[F1](k · h)}

f ′ · B id (k · h · T (Φ′[F1](k · h)))

= {definition}

Ψ′ (k · h).

The second assumption in this calculation, namely,

M p1 · Φ[F1]h = Φ′[F1](k · h),

where p1 :: F1 N ·M ′ → M ′ · F1 N ′, is elaborated to simpler assumptions, using
the inductive definitions of Φ and Φ′. We will spell out the details for our three
examples.

Example 5.4 For List we have Φ[F1]h = g :: M → M . Hence

Fold-fusion law for List. Given the typings f :: Base · 〈M ,N · Pair〉 → N ,
g :: M → M and p :: M ′ → M ′, we have

k · gfold f g = gfold f ′ (M p · g) ⇐ k · f = f ′ · base id (k · N p).

For example, consider the composition

gfold f id · gfold α g ,

where f :: Base · 〈M ,N · Pair〉 → N and g :: M → M . The function gfold f id ::
List · M → N is a fold, while the function gfold α g :: List · M → List · M is
called the triangle with respect to g . We have

gfold f id · α = f · base id (gfold f id · list id).

Hence an appeal to fold-fusion gives

gfold f id · gfold α g = gfold f g .

Thus every generalised fold on lists (and indeed any regular type) can be factored
as a regular fold after a triangle. In fact, every triangle can be expressed as a
regular fold:

gfold α g · α

= {definition}

α · base id (gfold α g · list g)

= {map-fusion}

α · base id (gfold (α · base g id) g)

= {fold-fusion (backwards)}

α · base id (g · gfold α g)

= {functoriality of base}

α · base id g · base id (gfold α g).
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Hence gfold α g = fold (α · base g id), and gfold f g is a composition of regular
folds. Note that we have not used any property of base except functoriality, so
this factorisation may be applied to the generalised fold on any regular type.

Example 5.5 For Nest , we have Φ[F1]h = g :: Pair ·M → M · Pair . Hence

Fold-fusion law for Nest. Given the typings

f :: Base · 〈M ,N · Pair〉 → N

g :: Pair ·M → M · Pair

p :: Pair ·M ′ → M ′ · Pair

we have

k · gfold f g = gfold f ′ (M p · g) ⇐ k · f = f ′ · base id (k · N p).

The fold-fusion law for Nest takes the same form as for List , Though the types of
g and p are different. Here is a simple example. The function listify :: Nest → List
can be defined by

listify = gfold (α · base id (concat · list duo)) id

where α :: Base · 〈Id ,List〉 → List is the initial list algebra, duo :: Pair → List
converts a pair of values into a list of two values, and concat :: List ·List → List
concatenates a list of lists into one list. Here M = Id and N = List .

Furthermore, the function sumL :: List · Int → Int , which sums a list of
integers, is given by

sumL = fold sumB ,

where fold is the fold function for lists.
Now consider the combination sumL · listify . We can fuse the two functions

provided

sumL · α · base id (concat · list duo) = f ′ · base id (sumL · list p),

for some p :: Pair · Int → Int and f ′ :: Base · 〈Int , Int〉 → Int . For the proviso
we can calculate:

sumL · α · base id (concat · list duo)

= {definition of sumL}

sumB · base id sumL · base id (concat · list duo)

= {functoriality of base}

sumB · base id (sumL · concat · list duo)

= {property of sumL and functoriality of list}

sumB · base id (sumL · list (sumL · duo))

= {since sumL · duo = plus}

sumB · base id (sumL · list plus).

Hence sumL · listify = gfold sumB plus. The expression on the right is just the
function sumN , given in the previous section, for summing a nest of integers
directly.
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Example 5.6 For T = Host , we have Φ[F1]h = g1 · id × (h · T g2), where
g1 :: M × N → M · (Id × N ) and g2 :: M → M . For fold-fusion we require
k · f = f ′ · base id (k ·N p), where p :: M ′× (N ·M ′) → M ′ · (Id ×N ′) is required
to satisfy the equation

M p · Φ[F1]h = Φ′[F1](k · h).

This condition expands to

M p · g1 · id × (h · T g2) = g ′1 · id × (k · h · T g ′2).

To eliminate the dependence on h, suppose

M p · g1 = g ′1 · id × (k · N q)

for some q :: M ′ → M ′. Then we can argue:

M p · g1 · id × (h · T g2)

= {assumption, and functoriality of ×}

g ′1 · id × (k ·N q · h · T g2)

= {naturality of h :: T ·M → N and functoriality of T}

g ′1 · id × (k · h · T (M q · g2))

Hence the fold-fusion law can be put in the form

Fold-fusion law for Host. Given the typings

f :: Base · 〈M ,N · (Id ×N )〉 → N

g1 :: M ×N → M · (Id ×N )

g2 :: M → M

q :: M ′ → M ′,

we have

k · gfold f g1 g2 = gfold f ′ g ′1 (M q · g2)

provided that, for some p :: M ′ × (N ·M ′) → M ′ · (Id ×N ′),

k · f = f ′ · base id (k · N p) and M p · g1 = g ′1 · id × (k ·N q).

6. Uniqueness of generalised folds

Our aim in this section is to show that generalised folds are the unique solutions
of their defining equations, which have the form

gfold f g1 · · · gm · αM = Ψ(gfold f g1 · · · gm)

for some form Ψ :: ∀X . (X ·M → N ) → (F X ·M → N ). It turns out that it is
easier to solve a more general problem. Suppose we are given functors F :: C → C
and L :: C → D for categories C and D, for which F has least fixed point α ::
F T → T , and a natural transformation Ψ :: ∀A. (LA → B) → (L (F A) → B).
We seek conditions on F and L to ensure there is a unique x :: LT → B such
that

x · Lα = Ψ x . (1)
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Note that the naturality of Ψ implies that

Ψ (f · L x ) = Ψ f · L (F x ). (2)

Some instances of this general scheme are:

• The gfold over nested types is the special case where F and L are higher
order functors, with L = (·M ). The action of this functor on natural trans-
formations, like α, yields instances αM .

• In the special case L = Id , equation (2) implies

Ψ x = Ψ id · F x

so that Ψ is determined by Ψ id :: F B → B and the generalised fold reduces
to an ordinary fold.

• Further instances are defining equations of the form

x · Lα = f ·G x · g

for functions f :: G B → B and g :: L · F → G · L. For example, zip-
like functions [FSZ94] are of this form, with L = × (a binary functor) and
g :: F1 × F2 → G · ×.

Furthermore, this uniqueness property leads to a general fusion law, stating that
for any natural transformation Φ :: ∀A. (LA → B) → (L′ A → B),

Φ (gfold Ψ) = gfold Ψ′ ⇐ Φ ·Ψ = Ψ′ · Φ.

All the previous fusion laws are instances of this scheme.

We present two solutions to this problem. The first depends on the details
of the colimit construction of the fixed point, but works for a larger class of
functors L than the second, more abstract, approach. For example, the first
approach works for L = ×, while the second does not.

6.1. First method: colimits

Theorem 1. Suppose the functors F and L preserve colimits of chains (all those
we can define in Haskell do), and L preserves initiality. Then equation (1) has a
unique solution.

Proof. Suppose the colimit used to construct the fixed point T of F consists
of functions en :: Fn 0 → T . By construction, the isomorphism α :: F T ∼= T
satisfies

α · F en = en+1 (3)

for each n. Since L preserves initiality, there is a unique arrow z :: L 0 → B . We
shall show that

x · Lα = Ψ x ≡ ∀n. x · L en = Ψn z .

Since the arrows L en comprise a colimit, this establishes the existence and
uniqueness of x .

First, we prove

∀n. x · L en = Ψn z ⇐ x · Lα = Ψ x
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by induction on n. The base case is immediate from the initiality of L 0. The
induction step is

x · L en+1

= {equation (3)}

x · L (α · F en)

= {functor}

x · Lα · L (F en)

= {hypothesis}

Ψ x · L (F en)

= {equation (2)}

Ψ(x · L en)

= {induction hypothesis}

Ψ(Ψn z )

To establish the reverse implication, we reason

x · Lα = Ψ x

≡ {isomorphism}

x = Ψ x · Lα−1

⇐ {colimit}

∀n.Ψ x · Lα−1 · L en = Ψn z

⇐ {by cases of n (see below)}

∀n. x · L en = Ψn z

The case n = 0 is immediate from the initiality of L 0. The case n = m + 1 is

Ψ x · Lα−1 · L em+1

= {equation (3)}

Ψ x · Lα−1 · Lα · L (F em)

= {functor, isomorphism}

Ψ x · L (F em)

= {equation (2)}

Ψ(x · L em)

= {hypothesis}

Ψ(Ψm z )

completing the proof.

6.2. Second method: adjoints

Another approach is to note that we seek a function of type LT → B , whereas
a fold can supply a function of type T → B ′. Recall that an adjunction between
L and a functor R defines an isomorphism

ϕ :: ∀A,B . (LA → B) ∼= (A → R B). (4)
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Setting A = T , this yields a correspondence between generalised folds and ordi-
nary folds.

Theorem 2. If L has a right adjoint, then equation (1) has a unique solution.

Proof. Let ϕ denote the isomorphism defined by the adjunction, as above. We
will be applying it to both sides of equation (1). We calculate

ϕ (Ψ x )

= {isomorphism}

ϕ (Ψ (ϕ−1 (ϕ x )))

= {naturality of ϕ−1, introducing the counit ε = ϕ−1 id}

ϕ (Ψ (ε · L (ϕ x )))

= {naturality of Ψ}

ϕ (Ψ ε · L (F (ϕ x )))

= {naturality of ϕ}

ϕ (Ψ ε) · F (ϕ x )

Thus we have

x · Lα = Ψ x

≡ {isomorphism}

ϕ (x · Lα) = ϕ (Ψ x )

≡ {naturality of ϕ}

ϕ x · α = ϕ (Ψ x )

≡ {above calculation}

ϕ x · α = ϕ (Ψ ε) · F (ϕ x )

≡ {fold uniqueness}

ϕ x = fold (ϕ (Ψ ε))

≡ {isomorphism}

x = ϕ−1 (fold (ϕ (Ψ ε)))

Note that this version is strictly weaker than the lower-level approach using
colimits: any functor with a right adjoint necessarily preserves all colimits, while
× is an example of a functor that preserves initiality and colimits of chains, but
not coproducts.

To apply this theorem to generalised folds over nested datatypes, it remains
to construct a right adjoint to (·M ). This is a well-studied problem in category
theory, where it is known as the right Kan extension [Mac71, X.3], and is known
to exist if M is defined on a small complete category. It is also possible to
eliminate the size condition by restricting the class of functors M , say to nested
functors.

We can define this adjunction in Haskell by introducing a continuation type
Cont M N , and constructing an isomorphism pair between T · M → N and
T → Cont M N . The functor Cont is declared as

newtype Cont m n a = MkCont (∀ b. (a → m b) → n b)



Generalised folds for nested datatypes 21

Thus, Cont wraps a higher-order polymorphic function. For fixed M and N , the
functorial action of Cont is defined by

cont :: (a → b) → Cont m n a → Cont m n b
cont f (MkCont g) = MkCont (λ k . g(k · f ))

One half of the isomorphism is the function

toCont :: Functor t ⇒ (∀ a. t (m a) → n a) → t b → Cont m n b
toCont f x = MkCont (λ k . f (mapt k x ))

The function mapt is the functorial action of t . The subscript is added for clarity;
it is not used in Haskell.

The other half of the isomorphism pair is

fromCont :: Functor t ⇒ (∀ a. t a → Cont m n a) → t (m b) → n b
fromCont f = applyto id · f

where the function applyto k applies a continuation to k :

applyto :: (a → m b) → Cont m n a → n b
applyto k f = unCont f k

unCont :: Cont m n a → (a → m b) → n b
unCont (MkCont x ) = x

Then toCont and fromCont is an isomorphism pair, meaning that

toCont · fromCont = id

fromCont · toCont = id .

The first identity is verified by the following calculation:

toCont (fromCont f ) x

= {definitions of toCont and fromCont}

MkCont (λ k . applyto id (f (mapt k x )))

= {definition of applyto}

MkCont (λ k . unCont (f (mapt k x )) id)

= {naturality of f }

MkCont (λ k . unCont (cont k (f x )) id)

= {definition of cont}

MkCont (λ k . (λ k ′. unCont (f x ) (k ′ · k)) id)

= {beta reduction; identity}

MkCont (λ k . unCont (f x ) k)

= {eta reduction; definition of unCont}

f x .

For the second identity, we calculate:

fromCont (toCont f ) x

= {definitions of fromCont , applyto}

unCont (toCont f x ) id

= {definitions of toCont and unCont}
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(λ k . f (mapt k x )) id

= {beta reduction}

f (mapt id x )

= {functoriality of mapt}

f x .

7. Final remarks

The subject of nested datatypes and what they might provide for the practical
programmer is still in its infancy. Most of the published work so far (in par-
ticular, [Oka98]) uses nested types only as a conceptual tool; the results are
translated into programming terms by embedding nested types in regular ones
in a systematic way. One reason that nested types have not been used directly
is that, until recently, there has been no language support for defining functions
over such types. Recent versions of Haskell permit rank-2 type signatures and,
as we have seen, such a move is necessary to implement functions over nested
types.

Defining functions over nested datatypes by explicit recursion is complicated,
and even more error prone than using a similar style with regular types. The real
purpose of concentrating on the fold function for a datatype is that it provides a
structured approach to inductive functional programming. Such a concentration
has added force when the datatype is nested.
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