
Inverting Functions as Folds

Shin-Cheng Mu and Richard Bird

Programming Research Group, Oxford University
Wolfson Building, Parks Road, OX1 3QD, UK

Abstract. This paper is devoted to the proof and applications of a the-
orem giving conditions under which the inverse of a partial function can
be expressed as a relational hylomorphism. The theorem is a generalisa-
tion of a previous result, due to Bird and de Moor, that gave conditions
under which a total function can be expressed a relational fold. The
theorem is illustrated with three problems, all dealing with constructing
trees with various properties.

1 Introduction

Many problems in computation can be specified in terms of computing the in-
verse of an easily constructed function. The purpose of this paper is to describe
one technique for inverting functions and to illustrate it with three examples.
We will begin by describing the three problems. First, consider the following
datatype Tree A of tip-valued binary trees:

dataTree A = Tip A | Bin (Tree A) (Tree A)

Suppose we are given two lists, one representing the depths of the tips of a
tree in left-to-right order, and the other the tip values themselves. How can
we reconstruct the tree from the two lists? This particular problem arises, for
instance, in the final phase of the Hu-Tucker algorithm [18]. For simplicity, we
will identify tip values with their depths, as in Figure 1. Of course, not every list
of numbers corresponds to the depths of the tips of a tree.

3 3 3

4 4

3 3
2

Fig. 1. A tree whose tips have depths [3, 3, 3, 4, 4, 3, 3, 2]

In the second problem, we are given a list of trees. The task is to combine
them into a single tree, retaining the left-to-right order of the subtrees. How can

E.A. Boiten and B. Möller (Eds.): MPC 2002, LNCS 2386, pp. 209–232, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

210 Shin-Cheng Mu and Richard Bird

we do this to make the height of the resulting tree as small as possible? Figure 2
illustrates one such tree, of height 11, for given subtrees of heights [2, 9, 8, 3, 6, 9].
As the actual content of the subtrees isn’t important, we can think of them
simply as numbers representing the heights. The problem is therefore also one
of turning a list of numbers to a tree.

2 9
8

3 6

9

Fig. 2. A tree with height 11 built from trees with heights [2, 9, 8, 3, 6, 9]

The third problem is that of breadth-first labelling. Consider the following
definition of internally and externally labelled binary trees:

dataTree A = Tip A | Bin A (Tree A) (Tree A)

A breadth-first labelling of a tree with respect to a given list is the problem of
augmenting the nodes of the tree with values in the list in breadth-first order.
Figure 3 shows the result of breadth-first labelling a tree with 13 nodes with
the infinite list [1 · ·]. While everybody knows how to do breadth-first traversal,
the closely related problem of efficient breadth-first labelling is not so widely
understood.

a,1

b,2 g,3

f,5c,4 h,6 m,7

d,8 e,9 i,10 j,11

k,12 l,13

a

b g

fc h m

d e i j

k l

Fig. 3. Breadth-first labelling a tree on the left with [1 · ·].

Inverting Functions as Folds 211

All three problems involve building (or rebuilding) a tree of some kind, and
all can be specified in terms of the converse operation of flattening a tree into a
list of its values. Functional programmers are aware that flattening a structure
is usually performed by a fold operation. Consequently, building a structure is
usually performed by the converse operation, unfold. However, there is no reason
why the converse operation should necessarily involve an unfold. The converse-
of-a-function theorem, to which this paper is devoted, gives us conditions under
which the inverse of a function can be written as a fold.

In the following sections we will show how this theorem can be applied to
derive solutions to the above problems. We claim that the converse-of-a-function
theorem is useful because many problems can be specified in terms of an inverse
of a known function. Functional programmers make use of a handful of laws
and theorems to transform specifications to optimising code. The converse-of-
a-function theorem is another useful tool worth adding to the functional pro-
grammer’s arsenal. Its joint use with the fold fusion theorem turns out to be
a recurring pattern in program derivation. Finally, we will present and prove a
generalised theorem allowing one to write the inverse of a partial function as a
hylomorphism.

2 Theory

The converse of a function is a relation, so our framework is of necessity a calculus
of relational programs [3,5]. In this section we will present enough notation to
describe the main ideas. Further concepts are introduced in Section 7.

2.1 Relations

Set-theoretically speaking, a relation R :: A ❀ B is a set of pairs (a, b) where a
has type A and b type B . The converse of a relation is defined by flipping the
pairs, that is,

(b, a) ∈ R◦ ≡ (a, b) ∈ R

For R :: B ❀ A and S :: C ❀ B , the composition R · S :: C ❀ A is defined by

(c, a) ∈ R · S ≡ (∃b : b ∈ B : (c, b) ∈ S ∧ (b, a) ∈ R)

Converse is contravariant with respect to composition, so (R · S)◦ = S ◦ · R◦.
For each type A, a relation idA is defined by idA = {(a, a)|a ∈ A}. We will

omit the subscript when it is clear from the context. A relation R :: A ❀ B is
called simple if R ·R◦ ⊆ id . That is, every value in A is mapped to at most one
value in B . In other words, R is a partial function. A relation R is called entire
if id ⊆ R◦ · R, that is, every value in A is mapped to at least one value in B . A
relation is a (total) function if it is both simple and entire.

In this paper we write the type of a function as A → B , that of a partial
function as A −+→ B , and that of a relation as A ❀ B .

212 Shin-Cheng Mu and Richard Bird

A relation is called a coreflexive if it is a subset of id . We use coreflexives
to model predicates. The ? operator converts a boolean-valued function to a
coreflexive:

(a, a) ∈ p? ≡ p a

For convenience, we let (a, a) �∈ p? both when p a yields False and when a is
not in the domain of p. If we perform two consecutive tests, one of them being
stronger than the other, the stronger one can absorb the weaker one:

(p a ⇒ q a) ⇒ p? · q? = p? (1)

Given a relation R :: A ❀ B , the coreflexive dom R :: A −+→ A determines the
domain of R and is defined by

(a, a) ∈ dom R ≡ (∃b : b ∈ B : (a, b) ∈ R)

Alternatively, dom R = R◦ · R ∩ id , where ∩ denotes set intersection. It follows
that

dom R ⊆ R◦ · R (2)

The coreflexive ran R determines the range of a relation and is defined by ran R =
dom R◦.

When writing in a pointwise style, relations can be introduced by the choice
operator ✷. The expression x ✷ y non-deterministically yields either x or y. For
example, the following relation prefix maps a list to one of its prefixes:

prefix :: List A ❀ List A
prefix = foldr step []

where step :: A → List A ❀ List A
step a x = (a : x) ✷ []

In each step of the fold we can choose either to cons the current item to some
prefix of the sublist, or just return the empty sequence [], which is a prefix of
every list. For a more rigorous semantics of ✷, the reader is referred to [9].

2.2 Folds

Datatypes come with fold functions. For lists, the Haskell Prelude function
foldr :: (A → B → B) → B → List A → B is well known. A slight variation for
non-empty lists can be defined by

foldrn :: (A → B → B) → (A → B) → List+ A → B
foldrn f g [a] = g a
foldrn f g (a : x) = f a (foldrn f g x)

Here List+ A denotes the type of non-empty lists. Recall the Tree datatype
defined in the introduction; its fold function can be defined as:

foldtree :: (B → B → B) → (A → B) → Tree A → B
foldtree f g (Tip a) = g a
foldtree f g (Bin x y) = f (foldtree f g x) (foldtree f g y)

Inverting Functions as Folds 213

All of these folds are instances of a more general definition. A regular datatype
T can be defined as the fixed-point of a base functor F. That is to say, there is
an isomorphism

αF :: FT → T

Datatypes are often parameterised. In that case αF has type FA(TA) → TA. For
example, cons-lists over an arbitrary is the fixed-point of FA X = 1 + (A × X).
When denoting types, we will write F(A,X) instead of FA X , thinking of F as a
bifunctor. For more example, the base functor for non-empty lists is F(A,X) =
A+ (A × X), and that for Tree is F(A,X) = A+ (X × X).

Given a base functor F for a datatype TA and a function f of type F(A,B) →
B for some B , the catamorphism ([f])F :: TA → B is the unique function satis-
fying

([f])F · αF = f · F([f])F
The different folds are special cases of ([f])F instantiated to different base func-
tors, except that in Haskell, we usually divide f into several functions or con-
stants, each of which corresponds to the operation on a particular operand of
the coproduct in the base functor.

A functor on relations that takes functions to functions and is monotonic un-
der relational inclusion is called a relator. By switching from functors to relators,
the above theory extends to relations as well. A catamorphism ([R])F, where R
is a relation of type F(A,B) ❀ B , now has type TA ❀ B . For a fuller account
of relator theory and relational catamorphisms, the reader is referred to [2,3].

3 The Converse-of-a-Function Theorem

The converse-of-a-function theorem, introduced in [5,9], tells us how we can write
the inverse of a function as a fold. It reads:

Theorem 1 (Converse of a Function). Let f :: B → TA be a function and
F the base functor for T. If R :: F(A,B) ❀ B is surjective and f · R ⊆ αF · Ff ,
then f ◦ = ([R])F.

The specialisation of this theorem to functions over lists reads as follows:
let f :: B → List A be given. If base :: B and step :: A → B ❀ B are jointly
surjective (meaning that {base} ∪ {b′ | ∃ a, b : (b′, b) ∈ step a} = B) and satisfy

f base = []
f (step a x) = a : f x

then f ◦ = foldr step base.
Similarly, to invert a total function f on non-empty lists, Theorem 1 states

that if base :: A ❀ B and step :: A → B ❀ B are jointly surjective (that is,
ran base ∪ ran step = idB) and satisfy

f (base a) = [a]
f (step a x) = a : f x

214 Shin-Cheng Mu and Richard Bird

then f ◦ = foldrn step base.
We will postpone the proof of Theorem 1 to Sect. 7, where in fact a more

general result is proved. For now, let us see some of its applications.

4 Building a Tree from Its Depths

We will start with a formal specification of the problem of a building a tree given
the depths of its tips. First of all, the familiar function flatten, which takes a
tree and returns its tips in left-to-right order, can be written as a fold:

flatten :: Tree A → List+ A
flatten = foldtree (++)wrap

Here wrap x = [x] wraps an item into a singleton list.
A tree of integers is well-formed if one can assign to it a level, where the level

of a tip is the number at the tip, and the level of a non-tip is defined only if its
two subtrees have the same level, in which case it is one less than the levels. The
partial function level can be defined by:

level :: Tree Int −+→ Int
level = foldtree up id

where up a b = if a b then a − 1

Note that the if clause in the definition of up has only one branch. Therefore,
level is a partial function which only returns a value for a tree when its left and
right subtrees have been assigned the same level.

We call a tree well-formed if it is in the domain of level . Our problem can
thus be specified by

build = dom level · flatten◦

We have generalised the problem a little, allowing the level number of the re-
sulting tree to be other than zero.

The relation flatten◦ maps a list to an arbitrary tree that flattens to the list.
For a given list, there will be many such trees. The coreflexive dom level acts
as a filter picking those that are well-formed. Our specification is therefore an
instance of the “generator – filter” paradigm that recurs frequently in functional
programming.

Now we have got the problem specification, we are left with two problems:
how to compute flatten◦, and how to fuse dom level into the computation.

4.1 Building a Tree with a Fold

Our aim is to apply the converse-of-a-function theorem to invert flatten. We
need a pair of relations one :: A ❀ Tree A and add :: A → Tree A ❀ Tree A that
are jointly surjective and satisfy

flatten (one a) = [a]
flatten (add a x) = a : flatten x

Inverting Functions as Folds 215

Look at the second equation. It says that if we have a tree x which flattens to
some list as , the relation add must be able to create a new tree y out of a and
x such that y flattens to a : as . One way to do that is illustrated in Fig. 4. We
divide the left spine of x in two parts, move down the lower part for one level,
and attach a to the end.

x2

x3

x4

x1

b

b

a

a
x4

x3

x2

x1

+

Fig. 4. Adding a new node to a tree

To facilitate this operation, we introduce an alternative spine representation.
A tree is represented by the list of subtrees along the left spine, plus the left-most
tip. The function roll converts a spine back into a single tree, and is in fact an
isomorphism between Spine A and Tree A.

type Spine A = A × List(Tree A)

roll :: Spine A → Tree A
roll(a, x) = foldl Bin (Tip a) x

The advantage of this representation is that we can trace the spine upward from
the left-most leaf, rather than downwards from the root. As we will see in the
end of the next section, this is necessary for an efficient algorithm.

The function flatten · roll flattens a spine tree. Our task now is to invert
it as a fold. We need a pair of relations one :: A ❀ Spine A and add :: A →
Spine A ❀ Spine A satisfying

flatten (roll (one a)) = [a] (3)
flatten (roll (add a (b, xs))) = a : flatten (roll (b, xs)) (4)

We claim that the following definition for one and add does the job:

one a = (a, [])
add a (b, xs) = (a, roll (b, ys) : zs)

where ys ++ zs = xs

The non-deterministic pattern in the definition of add , dividing the list xs into
two parts, indicates that add is a relation. The relations one and add are jointly

216 Shin-Cheng Mu and Richard Bird

surjective because roll , being an isomorphism, is surjective; thus, given any spine
tree (a,ws), either ws is empty, in which case it is covered by one a, or there
always exists a pair of (b, ys) such that they roll into the head of ws , in which
case (a,ws) would be one of the results of add a (b, ys ++ tail ws).

It is clear that the function one satisfies (3). To show that add satisfies (4),
we will need the following fact, whose proof is left to the diligent reader:

flatten(roll (a, xs)) = a : concat(map flatten xs) (5)

Now we will show that add satisfies (4):

a : flatten(roll (b, ys ++ zs))
= {(5)}

a : b : concat(map flatten (ys ++ zs))
= {concat and map distributes over ++ }

a : b : concat(map flatten ys) ++ concat(map flatten zs)
= {(5)}

a : flatten(roll (b, ys)) ++ concat(map flatten zs)
= {definition of concat and map}

a : concat(map flatten (roll(b, ys) : zs))
= {(5)}

flatten (roll (a, roll(b, ys) : zs))
= {definition of add}

flatten (roll (add a (b, ys ++ zs)))

Thus (flatten · roll)◦ = foldrn add one by Theorem 1.

4.2 The Derivation

Having inverted flatten · roll , we can start the derivation:

build
= {definition}

dom level · flatten◦

= {roll is an isomorphism}
dom level · (flatten · roll · roll◦)◦

= {converse is contravariant}
dom level · roll · (flatten · roll)◦

= {inverting flatten · roll as in the last section}
dom level · roll · foldrn add one

= {since dom R · f = f · dom (R · f), let wellform = dom (level · roll)}
roll · wellform · foldrn add one

Inverting Functions as Folds 217

Except for the introduction of roll , the derivation so far is mostly mechanical.
Whereas dom level checks whether a tree is well-formed, wellform is its coun-
terpart defined on spine trees. Intuitively, a spine tree (b, xs) is well-formed if
and only if all the trees in xs are well-formed, and the first tree in xs has a level
number b, the second tree has a level number b − 1, and so on.

As roll ·wellform is a partial function, it can be easily implemented in Haskell.
However, add is still a relation. If we can fuse wellform into the fold and thereby
refine add to a partial function, the whole expression will be implementable.

However, wellform is a rather strong condition to enforce. It is not possible
to maintain this invariant within the fold before and after each application of
add . It is time to take the second inventive step: to invent a weaker condition.
The predicate decform holds for a spine tree (b, xs) if the level number of the
first tree in xs is at most b and the trees in xs have strictly decreasing level
numbers:

decform (b, xs) = leading b xs ∧ decreasing (map level xs)
leading b xs = null xs ∨ level(head xs) ≤ b

Note that the application of level to all the trees in xs implicitly states the
requirement that all the trees are well-formed.

The predicate decform is weaker than wellform. We can thus derive:

roll · wellform · foldrn add one
= {(1)}

roll · wellform · decform? · foldrn add one
= {fold fusion, see below}

roll · wellform · foldrn add ′ one

The equality established by fold fusion in the last step ensures that no result is
lost from the refinement. Fortunately, it can be shown that the following fusion
condition is valid:

decform? · add a = add ′ a · decform?

where add ′ is defined by rolling the given spine tree up to the point when the
two left-most trees do not have the same level number:

add ′ a (b, xs) = leading? (a, decRoll (Tip b) xs)
decRoll x [] = [x]
decRoll x (y : zs) | (level x level y) = decRoll (Bin x y) zs

| otherwise = x : y : zs

The code is shown in Fig. 5. We refine the data structure to avoid recomputing
level by defining type SpineI and maintain the invariant that level x = n for
all pairs (x ,n) along the spine. Constructors Tip and Bin are lifted accordingly.
The function rollwf implements roll ·wellform. The check is performed implicitly
by bin each time two trees are joined. This algorithm is linear in the number of
nodes in the tree, as each call to join either stops or builds a new node.

218 Shin-Cheng Mu and Richard Bird

data Tree a = Tip a | Bin (Tree a) (Tree a) deriving Show

type SpineI = (Int, [(Tree Int, Int)])

build :: [Int] -> Tree Int

build = rollwf . foldrn add’ one

one a = (a,[])

add’ a (b,xs) | leading (a,zs) = (a,zs)

where zs = decRoll (tip b) xs

decRoll x [] = [x]

decRoll x (y:zs) | level x == level y = decRoll (bin x y) zs

| otherwise = x:y:zs

leading (a,xs) = level (head xs) <= a

tip a = (Tip a, a)

bin (x,m) (y,n) | m == n = (Bin x y, m-1)

level = snd

rollwf :: SpineI -> Tree Int

rollwf (b,xs) = fst (foldl bin (tip b) xs)

foldrn f g [x] = g x

foldrn f g (a:x) = f a (foldrn f g x)

Fig. 5. Code for rebuilding a tree from the depths of its tips

5 Building Trees with Minimum Height

Next we consider the second problem of building a tree with minimum height.
A linear-time algorithm to this problem has been proposed in [4], but here we
will demonstrate how a similar algorithm can be derived.

Given a tip-valued binary tree whose tip values represent the heights of trees,
the function computing the height of the combined tree can be defined as a fold
in the obvious way:

height :: Tree Int → Int
height = foldtree ht id

where ht a b = (a � b) + 1

where � returns the larger of its two arguments. The problem is thus to find,
among all the trees which flatten to the given list, one for which height yields
the minimal value. The specification needs to consider all possible results. For
that we need the power transpose operator Λ, also called the breadth function.

The power transpose operator Λ converts a relation R :: A ❀ B to a function
ΛR :: A → Set B . For a ∈ A, the set (ΛR)a contains all values in B to which a
is mapped:

(ΛR)a = {b | (a, b) ∈ R}

Inverting Functions as Folds 219

To extract a value from a set we need the relation min (�) :: Set A ❀ A, defined
by

(xs , x) ∈ min (�) ≡ x ∈ xs ∧ (∀y : y ∈ xs : x � y)

For this definition to be of any use, (�) has to be a connected preorder, meaning
an ordering which is reflexive, transitive, and compares everything of the correct
type. The relation min (�) will not in general be a function because a preorder
is not necessarily anti-symmetric.

For our problem, define (�) to be a comparison between the heights of two
trees:

x � y ≡ height x ≤ height y

Our problem can then be specified as:

bmh = min (�) · Λ(flatten◦)

The reasoning in Sect. 4.1 can be reused: we introduce the spine representation
and invert flatten to roll · foldrn add one. Furthermore, roll can be factored out
of Λ, and we get:

bmh = roll · min (�′) · Λ(foldrn add one)

where xs �′ ys ≡ roll xs � roll ys, i.e., (�′) is the counterpart of (�) defined on
spine trees.

Since the relation add has n +1 choices when given a spine tree of length n,
the above specification generates an exponential number of trees. To eliminate
the non-determinism in add and thereby improve the efficiency, we make use
of the following greedy theorem. Presented below is a special case of the more
general version proved in [5].

Theorem 2 (The Greedy Theorem (For Non-empty Lists)). Let base ::
A ❀ A and step :: A → B ❀ B be two relations. If step is monotonic on a
connected preorder (✂), that is,

(x ✂ y ∧ (y, y ′) ∈ step a) ⇒ (∃x ′ : (x , x ′) ∈ step a : x ′ ✂ y ′) (6)

then we have

foldrn (min (✂) · Λstep) (min (✂) · Λbase) ⊆ min (✂) · Λ(foldrn step base)

Informally, the monotonicity condition means that a worse partial solution
in some stage of the fold always gives a worse result. If this condition holds, then
at each stage of the fold we need only retain one of the best results computed
so far. Thus min (✂) gets promoted into foldrn.

Had add satisfied the monotonicity condition (6) with respect to (�′), we
could apply the greedy theorem. However, that is not true: a tree with the
smallest height does not always remain the smallest after being extended by
add .

220 Shin-Cheng Mu and Richard Bird

This is where human ingenuity gets involved. Fortunately, add is monotonic
on a stronger ordering. We define:

heights (a, xs) = (reverse · map height · scanl Bin (Tip a)) xs

In words, heights returns a list of heights along the left spine, starting from the
root. The relation add is then monotonic on �, defined by:

x � y ≡ heights x ✂ heights y

where (✂) is the lexicographic ordering on sequences. This choice does make
sense: to ensure monotonicity, we need to optimise not only the whole tree, but
also all the subtrees on the left spine. The proof that add is monotonic on (�),
however, is quite involved and will not be presented here. The reader is referred
to [6] for more detailed discussion.

Applying the greedy theorem, we get:

bmh = roll · foldrn (min (✂) · Λadd) (min (✂) · Λone)

Since one is a function, min (�)·Λone = one. With some analysis, we can further
optimise min (�) ·Λadd . Let (b, [x1, x2, ··, xn]) be the spine tree to which we are
about to insert a value a. It can be shown that in order to construct the best tree
under the ordering (�), we do not need to actually check through all the n + 1
possibilities. We can always break the list between xi and xi+1 such that i is
the smallest index such that a < height xi+1 and height (roll (b, [x1, x2, ··, xi])) <
height xi+1. We will also omit the details and refer the interested readers to [6].

The code is shown in Fig. 6. As in the first problem, we annotate each tree
with its height to avoid re-computation. By the same argument as that in the
end of Sect. 4.2, this algorithm is also linear in the number of nodes in the tree.

6 Breadth-First Labelling

To breadth-first label a tree with respect to a given list is to label the nodes in
the tree in breadth-first order, using the values in the list. Jones and Gibbons [13]
proposed a neat solution to this problem, based on a clever use of cyclic data
structures. The problem was recently revisited by Okasaki [22]. We are going to
show how Okasaki’s algorithm can be derived using the converse-of-a-function
theorem.

Recall the data structure for binary trees:

dataTree A = Tip A | Bin A (Tree A) (Tree A)

The queue-based algorithm for breadth-first traversal is well-known:

bft :: Tree A → List A
bft x = bftF [x]

typeForest A = List(Tree A)

Inverting Functions as Folds 221

bmh :: [Int] -> (Tree Int, Int)

bmh = roll . foldrn minadd one

one a = (a,[])

minadd :: Int -> SpineI -> SpineI

minadd a (b,xs) = (a, minsplit (tip b) xs)

where minsplit x [] = [x]

minsplit x (y:xs) | a < height y

&& height x < height y = x:y:xs

| otherwise = minsplit (bin x y) xs

tip a = (Tip a, a)

bin (x,a) (y,b) = (Bin x y, ht a b)

height = snd

ht a b = (a ‘max‘ b) + 1

roll :: SpineI -> (Tree Int, Int)

roll (a,x) = foldl bin (tip a) x

Fig. 6. Code for building trees with minimum height

bftF :: Forest A → List A
bftF [] = []
bftF (Tip a : xs) = a : bftF xs
bftF (Bin a x y : xs) = a : bftF (xs ++ [x , y])

To perform the labelling, we use the following partial function zipTree:

zipTree :: Tree A → Tree B −+→ Tree (A × B)
zipTree (Tip a) (Tip b) = Tip (a, b)
zipTree (Bin a x y) (Bin b u v) = Bin (a, b) (zipTree x u) (zipTree y v)

Breadth-first labelling of a tree x can then be seen as zipping x with another
tree y, in which the breadth-first traversal of y is a prefix of the given list as :

bfl :: List A → Tree B −+→ Tree (A × B)
bfl as x = zipTree y x

where (bft y) ++ bs = as

Equivalently,

bfl as x = zipTree ((bft◦ · prefix) as) x
= (zipTree · bft◦ · prefix) as x

This completes the specification. The relation prefix non-deterministically maps
a list to one of its finite prefixes. The prefix is then passed to bft◦, yet again being
non-deterministically mapped to a tree whose breadth-first traversal equals the

222 Shin-Cheng Mu and Richard Bird

chosen prefix. It is important that zipTree is a partial function which yields a
value only when the given two trees are of exactly the same shape. Therefore,
the tree composed by bft◦ · prefix can be zipped with the input tree only if it is
of the correct size and shape. The partial function zipTree plays the role of the
filter.

Since breadth-first traversal is an algorithm more naturally defined in terms
of queues of trees (or forests) rather than of a single tree, it is reasonable to try
to invert bftF rather than bft . The problem can be rephrased in terms of bftF :

bfl as x = wrap◦ ((zipForest · bftF ◦ · prefix) as [x])

Here zipForest :: Forest A → Forest B −+→ Forest (A,B) is a simple extension of
zipTree to forests, which, like zipTree, is a partial function:

zipForest [] [] = []
zipForest (x : xs) (y : ys) = zipTree x y : zipForest xs ys

Once the decision to focus on bftF is made, the rest is mechanical. To invert
bftF , we are to find base and step such that

bftF base = []
bftF (step a xs) = a : bftF xs

The value of base can only be []. The derivation for step is not too difficult
either. We start with the general case which does not assume any structure in
xs :

a : bftF xs
= {definition of bftF}

bftF (Tip a : xs)

Therefore step a xs might contain (Tip a : xs) as one of the possible values. But
this choice alone does not make step jointly surjective with [], since it cannot
generate a forest with a non-tip tree as its head. We therefore consider the case
when xs contains contains more than two trees:

a : bftF (xs ++ [x , y])
= {definition of bftF}

bftF (Bin a x y : xs)

Therefore we define step to be:

step :: A → Forest A ❀ Forest A
step a xs = (Tip a : xs) ✷ (Bin a x y : xs ′)

where (xs ′ ++ [x , y]) = xs

Since a forest either begins with a tip tree, begins with a non-tip tree, or is
empty, step is jointly surjective with []. The converse of bftF is thus constructed
as bftF ◦ = foldr step [].

Inverting Functions as Folds 223

Knowing that bftF ◦ :: List A ❀ Forest A is a fold, we can fuse zipForest and
bftF ◦ as a fold :

zipForest · bftF ◦ = foldr revZip stop
where stop [] = []

revZip a f (Tip b : ts) = Tip (a, b) : f ts
revZip a f (Bin b u v : ts) = Bin (a, b) x y : ys

where ys ++ [x , y] = f (ts ++ [u, v])

The expression zipForest · bftF ◦ has type List A → Forest B ❀ Forest (A × B).
Consider (zipForest · bftF ◦) x where x is a list of labels. Constructors building
x are replaced by revZip and stop, yielding a relation mapping an unlabelled
forest to a labelled forest. A pattern matching error will be invoked by stop if
x is too short, and by revZip if x is too long. Applying fold fusion again to
fuse zipForest · bftF ◦ with prefix in effect adds another case for revZip, that is,
revZip a f [] = [], which cuts the list of labels when the forest is consumed earlier
than the list. Still, the list of labels cannot be too short.

The resulting code is shown in Fig. 7. It can be made linear if we use an
implementation of deques supporting constant-time addition and deletion [8,21]
for both the input and output of revzip. For clarity, we will just leave it as it is.
It is nothing more than an adaption of Okasaki’s algorithm in [22] to lists. In his
paper, Okasaki raised the question why most people did not come up with this
algorithm but instead appealed to more complicated approaches. Our answer is
because they did not know the converse-of-a-function theorem.

data Tree a = Tip a | Bin a (Tree a) (Tree a) deriving Show

bfl :: [a] -> Tree b -> Tree (a,b)

bfl xs = unwrap . foldr revzip stop xs . wrap

where stop [] = []

revzip a f [] = []

revzip a f (Tip b:ts) = Tip (a,b) : f ts

revzip a f (Bin b u v :ts) = Bin (a,b) x y : ys’

where ys = f (ts ++ [u,v])

(ys’,x,y) = (init (init ys), last (init ys), last ys)

wrap a = [a]

unwrap [a] = a

Fig. 7. Code for breadth-first labelling

7 The Hylomorphism Theorem

By definition, a hylomorphism is the composition of a fold with the converse of
a fold. The hylomorphism ([R])F · ([S])F◦ can be characterised as the least solution

224 Shin-Cheng Mu and Richard Bird

for X of the inequation R · FX · S ◦ ⊆ X . In other words, we have:

([R])F · ([S])F◦ ⊆ X ⇐ R · FX · S ◦ ⊆ X (7)

The aim of this section is to prove the following generalisation of Theorem 1:

Theorem 3 (Hylomorphism Theorem). Let S :: A ❀ B be a simple rela-
tion. If relation R :: F(C ,A) ❀ A and function f :: F(C ,B) → B are such that
(i) dom S = ran R; (ii) S · R ⊆ f · FS ; and (iii) δF · R◦ is inductive, then

S = ([f])F · ([R])F
◦

In words, Theorem 3 gives conditions under which a simple relation can
be expressed as a hylomorphism. The new ingredients in Theorem 3 are the
membership relation δF of a relator F, and the notion of an inductive relation.
Both are described below in Sect. 7.1. The main proof is given in Sect. 7.2.

Theorem 1 follows as a special instance of Theorem 3 by taking f = α
and S to be an entire relation as well as a simple one, that is, a function. An
entire relation S is one for which dom S = id , so condition (i) translates to
the requirement that R be a surjective relation. In Sect. 7.2, we will prove that
condition (iii) holds if both (i) and (ii) do and if δF · f ◦ is inductive. Fact 1 below
gives us that δF · αF

◦ is inductive. Since ([αF])F = id , we then obtain the result
S = ([R])F

◦. Taking converses, this is the conclusion of Theorem 1.

7.1 Inductivity and Membership

We say that a relation admits induction, or is inductive, if we can use it to
perform induction[11]. Formally, inductivity is defined by:

Definition 1 (Inductivity). A relation R :: A ❀ A is inductive if for all
X :: B ❀ A,

R\X ⊆ X ⇒ Π ⊆ X

Here Π denotes the largest relation of its type, and the left division operator (\)
is defined by the Galois connection:

S ⊆ R\T ≡ R · S ⊆ T

The definition can be translated to the point level to aid understanding. It says
that R is inductive if the property

(∀c :: (c, a) ∈ R ⇒ (c, b) ∈ X) ⇒ (a, b) ∈ X

where a and b are arbitrary, implies X contains all the pairs of its type. As an
example, take R to be <, the ordering on natural numbers, and P a = (a, b) ∈ X
to be some property we want to prove for all a and some fixed b. The definition
specialises to the claim that if

(∀c :: c < a ⇒ P c) ⇒ P a

then P a holds for all natural numbers a. Thus we can see that inductivity
captures the principle of induction.

Three facts we will need are the following:

Inverting Functions as Folds 225

Fact 1 The relation δF · αF
◦ is inductive.

Fact 2 If R is inductive and S ⊆ R, then S is inductive.

Fact 3 If R is inductive, so is S ◦ · R · S for any simple relation S .

The other concept we need, due to Hoogendijk and de Moor [17], is the
membership relation of a datatype. For example, a membership relation δList for
lists can be specified informally by:

(a, [a0, a1, . . . an]) ∈ δList ≡ (∃i :: a = ai)

The formal definition of membership is not at all intuitive, and we refer the
reader to [17] for more discussion. A fact about membership we will use is that
it is a lax natural transformation, which is to say,

δF · FR ⊆ R · δF (8)

for all R.

7.2 The Proof

We begin by reciting some basic facts about a simple relation S . First, for any
X and Y ,

S · X ⊆ Y ⇐ X ⊆ S ◦ · Y (9)

The proof is immediate from the fact that S · S ◦ ⊆ id . More generally,

S · X ⊆ Y ≡ dom S · X ⊆ S ◦ · Y (10)

When S is also entire, i.e., dom S = id , this reduces to the usual shunting rule
for functions. The following shunting lemma will be used a number of times:

Lemma 1. Let S be simple and suppose R satisfies (i) ran R ⊆ dom S , and (ii)
S · R ⊆ f · FS . Then R ⊆ S ◦ · f · FS .

Proof.

R ⊆ S ◦ · f · FS
≡ {using R = ran R · R}

ran R · R ⊆ S ◦ · f · FS
⇐ {assumption (i)}

dom S · R ⊆ S ◦ · f · FS
≡ {shunting (10)}

S · R ⊆ f · FS

✷

226 Shin-Cheng Mu and Richard Bird

Now comes the main proof of Theorem 3. In one direction, the proof is relatively
easy:

([f]) · ([R])◦ ⊆ S
⇐ {(7)}

f · FS · R◦ ⊆ S
⇐ {shunting (9), since f · FS simple if S is}

R◦ ⊆ (f · FS)◦ · S
≡ {converses; Lemma 1}

true

For the other direction, we reason:

S ⊆ ([f]) · ([R])◦

≡ {shunting (10)}
dom S ⊆ S ◦ · ([f]) · ([R])◦

≡ {assumption (i): dom S = ran R}
ran R ⊆ S ◦ · ([f]) · ([R])◦

⇐ {claim : ran R ⊆ ran ([R])}
ran ([R]) ⊆ S ◦ · ([f]) · ([R])◦

⇐ {(2): ran X ⊆ X · X ◦}
([R]) · ([R])◦ ⊆ S ◦ · ([f]) · ([R])◦

⇐ {monotonicity}
([R]) ⊆ S ◦ · ([f])

≡ {converses and shunting, since ([f]) is a function if f is}
([R]) · ([f])◦ ⊆ S

≡ {proved above}
true

We still need to prove the claim that ran R ⊆ ran ([R]) under the given
conditions. We will appeal to the following lemma1, whose proof is postponed
to the appendix.

Lemma 2. If δF · R◦ is inductive and dom R ⊆ F(ran R), then

ran (R · FC) ⊆ C ⇒ ran R ⊆ C (11)

for coreflexives C .

To check that dom R ⊆ F(ran R), we reason:

dom R
⊆ {Lemma 1 : R ⊆ S ◦ · f · FS}

1 Property (11) is called F-inductivity in [11].

Inverting Functions as Folds 227

dom (S ◦ · f · FS)
⊆ {since dom (X · Y) ⊆ dom Y }

dom (FS)
⊆ {relators preserve domains: dom (FS) = F(dom S)}

F(dom S)
= {by assumption (i): dom S = ran R}

F(ran R)

That relators preserve domains is given in [5] as an exercise on tabulation.
Finally, the left-hand side of property (11), namely ran (R ·FC) ⊆ C , actually

holds for all R when C is ran ([R]).

ran ([R])
= {definition of ([R])}

ran (R · F([R]) · α◦)
= {since ran (X · Y) = ran (X · ran Y)}

ran (R · ran (F([R]) · ran (α◦)))
= {since ran (α◦) = id}

ran (R · ran (F([R])))
= {relators preserve domains}

ran (R · F(ran ([R])))

We therefore conclude that ran R ⊆ ran ([R]) under the given assumptions.
We will now prove a lemma which shows that condition (iii) of Theorem 3

holds if conditions (i) and (ii) do and if δF · f ◦ is inductive. It is this lemma that
establishes the connection between Theorem 1 and Theorem 3.

Lemma 3. The relation δF · R◦ is inductive if (i) ran R ⊆ dom S ; (ii) S · R ⊆
f · FS ; and (iii) δF · f ◦ is inductive.

Proof. We reason:

δF · R◦

⊆ {Lemma 1, converse}
δF · FS ◦ · f ◦ · S

⊆ {(8)}
S ◦ · δF · f ◦ · S

Since δF · f ◦ is inductive, so is S ◦ · δF · f ◦ · S by Fact 3. We then obtain that
δF · R◦ is inductive by Fact 2.

✷

228 Shin-Cheng Mu and Richard Bird

8 Conclusions and Related Work

The idea of program inversion can be traced back to Dijkstra [10]. However,
given the importance of inversion as a specification technique, relatively few pa-
pers have been devoted to the topic, and of those that have, most deal with
program inversion in an imperative setting. A program is inverted by running it
“backwards” and the challenging part is when we encounter a branch or a loop
[24]. The classic example was to construct a binary tree given its inorder and
preorder traversal [14,15,7,26,25]. Inversion of functional programs has received
even less attention. Most published results (e.g. [20,16]) are based on a “compo-
sitional” approach, which is essentially the same as its imperative counterpart:
if h is defined by f · g, then h◦ = g◦ · f ◦. The inverse of f and g are then re-
cursively constructed until we reach primitives whose inverses are pre-defined.
Efforts have also been made to automate the process, such as in [1]. This paper
also contains a detailed bibliography.

The converse-of-a-function theorem, however, takes a non-compositional ap-
proach to invert a function. To invert a function, what matters is not how it
is defined but what properties it satisfies. This technique is not new. Similar
techniques have been adopted in, for example, [19] and [23]. However, to the
best our knowledge, it was de Moor [5,9] who first presented the technique as a
theorem, suggesting a wider range of application. The problem dealt with in [9]
was precedence parsing, leading to a derivation of Floyd’s algorithm.

We have applied the converse-of-a-function theorem to three examples. The
inverted function is usually a non-deterministic fold. To make it useful, it is often
composed before some other function which acts as a filter. The fold fusion theo-
rem is then applied to fuse the filter into the fold to remove the non-determinism,
refining the specification to an implementable function. This pattern of deriva-
tion turned out to be useful in solving many problems.

One natural question is how widely the theorem can be applied. In other
words, how to determine whether the converse-of-a-function theorem can be
applied a particular function. Part of the answer is given in [12]: if the converse
of a function can be written as a fold, the function itself must be an unfold. The
necessary and sufficient conditions for a function to be an unfold given in [12]
can thus be used as a test before applying the converse-of-a function theorem.

We have not fully exploited the generality of Theorem 3. It can potentially
be very useful since it allows the functor F, which determines the pattern of
recursion, to be independent from the input and output types. A much wider
class of algorithms can thus be covered. However, the theorem itself offers no clue
how F and f could be chosen. It is therefore less useful for program derivation
and probably more helpful in proving the correctness of known algorithms. We
have applied the theorem to some simple cases, such as letting F(A,X) = A+X
to verify some loop-based algorithms. The authors are enthusiastic to see more
examples for which the more general theorem is necessary.

Inverting Functions as Folds 229

Acknowledgements

Thanks are due to members of the Algebra of Programming group in Oxford
University Computing Laboratory, to Oege de Moor, for his interest, encourage-
ment and comments throughout the development of this paper, and to Roland
Backhouse, who filled in a key step in an earlier proof of the theorem based
on F-reductivity and F-inductivity. The authors would also like to thank the
anonymous referees for detailed and useful advices.

References

1. S. M. Abramov and R. Glück. The universal resolving algorithm: inverse computa-
tion in a functional language. In R. C. Backhouse and J. N. F. d. Oliveira, editors,
Mathematics of Program Construction 2000, number 1837 in Lecture Notes in
Computer Science, pages 187–212. Springer-Verlag, 2000.

2. R. C. Backhouse, P. de Bruin, G. Malcolm, T. S. Voermans, and J. van der
Woude. Relational catamorphisms. In B. Moller, editor, Proceedings of the IFIP
TC2/WG2.1 Working Conference on Constructing Programs, pages 287–318. El-
sevier Science Publishers B.V., 1991.

3. R. C. Backhouse and P. F. Hoogendijk. Elements of a relational theory of
datatypes. In B. Moller, H. Partsch, and S. A. Schuman, editors, Formal Pro-
gram Development. Proc. IFIP TC2/WG 2.1 State of the Art Seminar., number
755 in Lecture Notes in Computer Science, pages 7–42. Springer-Verlag, January
1992.

4. R. S. Bird. On building trees with minimum height. Journal of Functional Pro-
gramming, 7(4):441–445, 1997.

5. R. S. Bird and O. de Moor. Algebra of Programming. International Series in
Computer Science. Prentice Hall, 1997.

6. R. S. Bird, J. Gibbons, and S.-C. Mu. Algebraic methods for optimization prob-
lems. In R. C. Backhouse, R. Crole, and J. Gibbons, editors, Algebraic and Coal-
gebraic Methods in the Mathematics of Program Construction, number 2297 in
Lecture Notes in Computer Science, pages 281–307. Springer-Verlag, January 2002.

7. W. Chen and J. T. Udding. Program inversion: more than fun! Science of Computer
Programming, 15:1–13, 1990.

8. T.-R. Chuang and B. Goldberg. Real-time deques, multihead Turing machines,
and purely functional programming. In Conference on Functional Programming
Languages and Computer Architecture, Copenhagen, Denmark, June 1993. ACM
Press.

9. O. de Moor and J. Gibbons. Pointwise relational programming. In Proceedings
of Algebraic Methodology and Software Technology 2000, number 1816 in Lecture
Notes in Computer Science, pages 371–390. Springer-Verlag, May 2000.

10. E. W. Dijkstra. Program inversion. Technical Report EWD671, Eindhoven Uni-
versity of Technology, 1978.

11. H. Doornbos and R. C. Backhouse. Induction and recursion on datatypes. In
B. Moller, editor, Mathematics of Program Construction, 3rd International Confer-
ence, number 947 in Lecture Notes in Computer Science, pages 242–256. Springer-
Verlag, July 1995.

12. J. Gibbons, G. Hutton, and T. Altenkirch. When is a function a fold or an un-
fold? In A. Corradini, M. Lenisa, and U. Montanari, editors, Coalgebraic Methods

230 Shin-Cheng Mu and Richard Bird

in Computer Science, number 44.1 in Electronic Notes in Theoretical Computer
Science, April 2001.

13. J. Gibbons and G. Jones. Linear-time breadth-first tree algorithms: an exercise in
the arithmetic of folds and zips. Technical report, University of Auckland, 1993.
University of Auckland Computer Science Report No. 71, and IFIP Working Group
2.1 working paper 705 WIN-2.

14. D. Gries. The Science of Programming. Springer Verlag, 1981.

15. D. Gries and J. L. van de Snepscheut. Inorder traversal of a binary tree and its
inversion. In E. W. Dijkstra, editor, Formal Development of Programs and Proofs,
pages 37–42. Addison Wesley, 1990.

16. P. G. Harrison and H. Khoshnevisan. On the synthesis of function inverses. Acta
Informatica, 29:211–239, 1992.

17. P. F. Hoogendijk and O. de Moor. Container types categorically. Journal of
Functional Programming, 10(2):191–225, March 2000.

18. T. C. Hu and A. C. Tucker. Optimal computer search trees and variable-length
alphabetical codes. SIAM Journal on Applied Mathematics, 21(4):514–532, 1971.

19. E. Knapen. Relational Programming, Program Inversion, and the Derivation
of Parsing Algorithms. Master’s thesis, Eindhoven University of Technology, 23
November 1993.

20. R. E. Korf. Inversion of applicative programs. In Proceedings of the Seventh Intern.
Joint Conference on Artificial Intelligence (IJCAI-81), pages 1007–1009. William
Kaufmann, Inc., 1981.

21. C. Okasaki. Simple and efficient purely functional queues and deques. Journal of
Functional Programming, 5(4):583–592, 1995.

22. C. Okasaki. Breadth-first numbering: lessons from a small exercise in algorithm
design. In Proceedings of the 2000 ACM SIGPLAN International Conference on
Functional Programming, pages 131–136. ACM Press, September 2000.

23. C. Pareja-Flores and J. Á. Velázquez-Iturbide. Synthesis of functions by transfor-
mations and constraints. In Proceedings of the 1997 ACM SIGPLAN International
Conference on Functional Programming, page 317, Amsterdam, The Netherlands,
June 1997. ACM Press.

24. B. J. Ross. Running programs backwards: the logical inversion of imperative com-
putation. Formal Aspects of Computing Journal, 9:331–348, 1997.

25. B. Schoenmakers. Inorder traversal of a binary heap and its inversion in optimal
time and space. In Mathematics of Program Construction 1992, number 669 in
Lecture Notes in Computer Science, pages 291–301. Springer-Verlag, 1993.

26. J. L. van de Snepscheut. Inversion of a recursive tree traversal. Technical Re-
port JAN 171a, California Institute of Technology, May 1991. Available online at
ftp://ftp.cs.caltech.edu/tr/cs-tr-91-07.ps.Z.

A Proof of Lemma 2

For completeness we will record the proof of Lemma 2, namely that if δF · R◦ is
inductive and dom R ⊆ F(ran R), then

ran (R · FC) ⊆ C ⇒ ran R ⊆ C

for coreflexives C .

Inverting Functions as Folds 231

To carry out the proof, we need to appeal to some properties left out earlier in
the paper. Firstly, there is yet another definition of ran via a Galois connection:

ran R ⊆ S ≡ R ⊆ S · Π
Once a Galois connection (f , g) is established, many properties follows. Since
any coreflexive can be a result of a ran, we have

C ⊆ D ≡ C · Π ⊆ D · Π (12)

for coreflexives C and D . Secondly, from the definition of left division it follows
that

(S · R)\T = R\(S\T) (13)

It also follows that division is anti-monotonic, that is

S ⊆ R ⇒ R\T ⊆ S\T
Finally, the equality below is proved in [17].

δF\(R · S) = FR · δF\S (14)

The proof of Lemma 2 proceeds by proving ran R ⊆ C , given ran (R · FC),
dom R ⊆ F(ran R) and δF · R◦ inductive.

Proof.

ran R ⊆ C
≡ {(12)}

ran R · Π ⊆ C · Π
≡ {division}

Π ⊆ ran R\(C · Π)
⇐ {since δF · R◦ inductive}

(δF · R◦)\(ran R\(C · Π)) ⊆ ran R\(C · Π)
⇐ {claim 1: (δF · R◦)\(ran R\(C · Π)) ⊆ R◦\FC · Π}

R◦\FC · Π ⊆ ran R\(C · Π)
≡ {division}

ran R · R◦\(FC · Π) ⊆ C · Π
⇐ {claim 2: ran R · R◦\(FC · Π) ⊆ R · FC · Π}

R · FC · Π ⊆ C · Π
≡ {range}

ran (R · FC · Π) ⊆ C
≡ {since ran (X · Y) = ran (X · ran Y) and ran Π = id}

ran (R · FC) ⊆ C

232 Shin-Cheng Mu and Richard Bird

To prove claim 1, we reason:

(δF · R◦)\(ran R\(C · Π))
= {(13)}

(ran R · δF · R◦)\(C · Π)
⊆ {(8), division is anti-monotonic}

(δF · F(ran R) · R◦)\(C · Π)
⊆ {by assumption: dom R ⊆ F(ran R), division is anti-monotonic}

(δF · dom R · R◦)\(C · Π)
= {dom R · R◦ = R◦}

(δF · R◦)\(C · Π)
= {(13)}

R◦\(δF\(C · Π))
= {(14)}

R◦\(FC · δF\Π)
= {since δF\Π = Π by division}

R◦\(FC · Π)

The proof for claim 2 goes:

ran R · R◦\(FC · Π)
⊆ {since ran R = (R · R◦) ∩ id}

R · R◦ · R◦\(FC · Π)
⊆ {division}

R · FC · Π
✷

	Introduction
	Theory
	Relations
	Folds

	The Converse-of-a-Function Theorem
	Building a Tree from Its Depths
	Building a Tree with a Fold
	The Derivation

	Building Trees with Minimum Height
	Breadth-First Labelling
	The Hylomorphism Theorem
	Inductivity and Membership
	The Proof

	Conclusions and Related Work
	Proof of Lemma ref {ind}

