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Abstract

A new concurrent form of game semantics is introduced.
This overcomes the problems which had arisen with previ-
ous, sequential forms of game semantics in modelling Lin-
ear Logic. It also admits an elegant and robust formal-
ization. A Full Completeness Theorem for Multiplicative-
Additive Linear Logic is proved for this semantics.

1 Introduction

This paper contains two main contributions:
� the introduction of a new form of game semantics,

which we callconcurrent games.
� a proof of full completenessof this semantics for

Multiplicative-Additive Linear Logic.

We explain the significance of each of these in turn.

Concurrent gamesTraditional forms of game semantics
which have appeared in logic and computer science have
beensequentialin format: a play of the game is formalized
as a sequence of moves. The key feature of this sequential
format is the existence of aglobal schedule(or polariza-
tion): in each (finite) position, it is (exactly) one player’s
turn to move1. This sequential format turns out to have im-
portant limitative consequences when we wish to use game
semantics to model programs or proofs:

� There is a modelling limitation. Sequential games can
be used to model sequential computation, but do not
yield models of parallel computation in a natural way.

� There is also a mathematical limitation. Despite
the evident inherent duality in games (interchange
the rôles of the two players), sequentiality is an
obstacle to modelling logics in a classical format,

�
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1All the games considered in this paper, and in the relevant literature to
date, are two-person games.

such as (Classical) Linear Logic. In fact, sequential
games have only yielded satisfactory models offrag-
mentsof Linear Logic: the Multiplicative fragment in
[AJ92b], the Multiplicative-Exponential fragment in
[BDER97], and thenegative fragmentin most other
work. This has been sufficient to model

�
-calculus-

based programming languages, but is inadequate as a
general account. We will illustrate this problem with
respect to Andreas Blass’s pioneering work on game
semantics below.

We will solve these problems by making a radical departure
from all the formal versions of “games in extensive form”
used to date in Logic and Computer Science of which we
are aware. We shall introduce a “true concurrency” version
of games in which the global polarization is abandoned.Lo-
cal decisions are still polarized, in the sense that they are for
one player or the other to make, but globally the two play-
ers act in a distributed, asynchronous fashion. At any given
time, both may be active in different parts of the “game
board”. Moreover, these concurrent games are a strict gen-
eralization of the usual sequential games.

Remarkably, this generalization and apparent compli-
cation can be formalized in a simple and robust way, ar-
guablymoreelegant and mathematically tractable than the
current formalizations of sequential games. In fact, the key
ideas of the formalization were present in Abramsky and
Jagadeesan’s “New Foundations for the Geometry of Inter-
action” [AJ92a]. What was missing in that work was the
game-theoretic interpretation of the mathematics, which in
turn suggests a more intuitive presentation using closure op-
erators.

This basic formalization, combined with a suitable form
of “Classical Linear Realizability”, which also contains a
number of important novel ingredients, leads to a model of
the whole system of Classical Linear Logic—and hence to
models of Intuitionistic and Classical Logic and various

�
-

calculi, via the by now well-established interpretations of
these systems into Linear Logic [Gir87, DJS97]. But how
good is this model?



Full CompletenessThe usual notion of completeness for
a logic is with respect to provability; Full Completeness is
with respect toproofs.

Let � be a model of the formulasandproofs of a logic�
. Typically this means that� is a category with structure

of an appropriate kind, such that the formulas of
�

denote
objects of� , proofs� in

�
of entailments� � � denote

morphisms

��� �� � ��� �� 	
 ��� �� �

and the convertibility of proofs in
�

with respect to cut-
elimination is soundly modelled by the equations between
morphisms holding in� . We say that� is fully complete
for

�
if for all formulas � , � of

�
, every morphism� ���� �� 
 ��� �� in � is the denotation of some proof� of

� � � in
�

: �  �����. Thus the full completeness of�
means that it characterizes “what it is to be a proof in

�
” in a

very strong sense. If� is defined in a syntax-independent
way, this is a true semantic characterization of the “space”
of proofs spanned by

�
.

The notion of Full Completeness was introduced in
[AJ92b], and a Full Completeness theorem was proved for
a game semantics of Multiplicative Linear Logic (with the
MIX rule). This was followed by a series of papers which
established full completeness results for a variety of mod-
els with respect to various versions of Multiplicative Lin-
ear Logic (MLL) [HO92, BS96, Loa94a, Loa94b]. How-
ever, there have been no results for logics beyond the (very
weak) multiplicative fragment of Linear Logic. In this pa-
per, we make a first significant extension beyond the mul-
tiplicative fragment, by proving that the concurrent games
model is fully complete for Multiplicative-Additive Linear
Logic (MALL). MALL is already a much richer system
than MLL, as shown by the much more sophisticated and
complex notion of proof net it requires [Gir95]. Our proof
of Full Completeness is correspondingly lengthy and com-
plex. (We can only give an outline in this extended abstract;
a detailed account is given in a draft full paper [AM98].)
However, we believe that our methods and results will ex-
tend to the exponentials as well, thus yielding a complete
analysis of Linear Logic.

Independently, Girard has obtained a form of Full Com-
pleteness result using a game semantics [Gir98a,b]. His
methods, and the details of his results, appear very differ-
ent to our’s. We are not yet familiar enough with his work
to make a detailed comparison.

The structure of the rest of the paper is as follows. In
Section 2, we present the concurrent games model. In Sec-
tion 3 we show how MALL proof structures are constructed
from strategies, and in Section 4 we outline the proofs of
the correctness criteria for these proof structures. Finally,
Section 5 gives the main result.

2 The concurrent games model

As a convenient point of departure, we begin withBlass
games[Bla92]. These have the form

�
��� � � �� ���� � �

where each� � is (co)inductively a Blass game. The idea is
that in���� � �, Opponent starts by playing some� � � , and
play then proceeds as in� �. ���� � � is defined dually, with
Player making the initial move� � � . Thus these games
are trees; at each stage, it is (exactly) one player’s turn to
move—the “global schedule”. Play proceeds as a sequence
of moves tracing a path through the tree. This commitment
to a sequential format forces an interleaving interpretation
of the multiplicatives (analogous to the Expansion Theorem
of CCS), which leads inexorably to the failure of composi-
tion of strategies to be associative, as shown in [AJ92b].

We begin our development of concurrent games with the
idea that game trees can be viewed as partial orders, in
which � � � means that the position� can be reached
from the position� by playing some additional moves. This
is a natural “information ordering” as in Domain theory
[AJ94]. If we add “limit points” corresponding to the infi-
nite branches in the game tree, we obtain a complete partial
order� .

Viewed in these terms, the construction of sums and
products of games as in Blass games can be described as
lifted sumsas far as the underlying domains of positions are
concerned:

��� ! " �  �#� ! " �  $���� �"� %& '

We shall represent strategies as functions on these domains
of positions: � � � 
 � , where � $�% is the position
obtained from� by extending it with whatever moves the
strategy makes in that position. It is then immediate that
� $� % ( �. Moreover, those positions where� has no moves
to make (e.g. because “it is not its turn”) are exactly thefix-
pointsof � . In the usual way, we require computationally
reasonable strategies to be monotonic and continuous. Fi-
nally, as a useful normalizing condition, we require strate-
gies to beidempotent: � )  � . To understand this, consider
� applied to� $� %. The only moves made in� $�% which
were not already made in� are those made by� itself:
� $� % contains no more information supplied by the Oppo-
nent (i.e. the environment) than� did. Hence anything�
decides to do at� $� % it should have already been able to
decide to do at�, and we require that� $� $� %%  � $�%. Of
course, this allows several moves to be made in a block by
a player. This possibility already exists in Blass games, e.g.
Opponent must move twice initially in

$� * � % * $+ * � %'



An important point is that strategies may not be well-
defined at all positions. In general there are some posi-
tions that can never be reached by following that strategy.
To mesh with the requirement that strategies are increasing
functions, we adjoin a top element to the domain of posi-
tions � , writing this as� � . We represent� being unde-
fined at� by � $�%  �

.
In summary, strategies (for either player) are represented

as continuous closure operators on� � , which under mod-
est assumptions on� (bounded completeness) is a com-
plete lattice. We can completely specify a game as a struc-
ture $� � � � � � %, where� is the domain of positions,� is
the set of legal strategies for Player, and� � is the set of
legal counter-strategies, i.e. strategies for Opponent. This
strictly generalizes Blass games: for such games,� is the
domain of finite and infinite sequences under the prefix or-
dering corresponding to the paths through the game tree,
and the conventions about who is to play are formalized by
saying that for all� � � , either� $� %  � for all � � � (it
is Opponent’s turn to move), or� $� %  � for all � � � � (it
is Player’s turn). However, this is a very special case of our
general setting; and we will overcome the problems with
Blass games precisely by allowing situations in whichboth
players can move.

To do this, we shall interpret the game boards for the
multiplicatives differently to Blass: by a true concurrency
rather than an interleaving representation. In our setting,
this is simply a matter of defining

�"��  �" ����������������������������������������������������������������������������������������������� �  �" * �� �
the cartesian product of domains.

How should the Linear Logic connectives be interpreted
as acting on sets of strategies? We define�"	  � �" ,
� �"	  �" , which corresponds to interchanging the rôles
of Player and Opponent. Clearly then�&&  � . For prod-
ucts, we define

�#� ! " �  
�� � �� � �  � � � � � � � � � �"� �
where

�� � �� � �  $� %  �
�� � �� � �  $�� � $� %%  �� � $� � $� %% '

This corresponds exactly to the idea that Player must first
wait for Opponent to choose an� � � , and then plays ac-
cording to some strategy for��.

� �#� ! " �  
�� � $� % � � � � � � � � �"� �
where

�� � $� % $� %  �� � $� $� %%
�� � $� % $�� � $� %%  �� � $� $� %%
�� � $� % $��� $� %%  � � $� � � % '

Again, this corresponds to the idea that a strategy for Op-
ponent will firstly choose some�, then play according to a
strategy for Opponent in��. Note that the last case above
covers “unreachable states” for�� � $� %. We can then define
sums by De Morgan duality:���� � �  $� ��� �&� %& .

For the strategies for tensor, we define

�"��  
� * � � � � �" � � � �� �
where� * � $� � � %  $� $� % � � $� %%. (This is really smash
product with respect to

�
; if either � $� %  �

or � $� % �
, then the result is

�
.) This exactly captures the idea of

informational independence between Player’s actions in�
and in� (cf. [AJ92b]). How Player moves in� depends
only on the information available in� , and similarly for� .

In order to define the counter-strategies for the Tensor
(and hence the strategies for Par and Linear implication,
and eventually the morphisms in the category of concurrent
games), we introduce the most important feature of our for-
malization: the elegant treatment it affords of composition
of strategies. Suppose firstly that� � � and � � � � in
a game$� � � � � � %. How do we play� off against� ? We
define

�� ��   � $� � � %  ���� $� � � %� $� %
 ���� $� � � %� $� %  � $� � � % '

The fact that these two least fixpoints coincide follows eas-
ily from the fact that� and � are continuous closures; in
fact, this is a special case of the construction of thejoin of
two closure operators. Thus�� ��  � � is the position we
reach as a result of playing� against� . The equality of the
two formulas above also shows that this is independent of
all questions about “who starts”.

Now given closure operators� on $� * � %� and� on
$� *� %� , we want to “compose” them to get a closure� � �
on $� * � %� . We define this as follows:

� � � $� � � %  $�  � � $� � � % � � ) � � $� � � %%
where

�  �� ) � � $� � 	% ��  � � $	 � � % '
That is, given input in� and� , we play� and� off against
each other in� relative to this input, and obtain their exter-
nal response taking into account their interaction with each
other.

In particular, if � is a closure on$� * � %� , it in-
duces an “action” taking closures on� � to closures on� � ,! "
 ! � � , and a “coaction” taking closures on� � back to
closures on� � , # "
 � � # . E.g. � � # $� %  � � � $� � � %,
where�  �� ) � � $� � 	% �# .

Now we can define

� �"��  
� � $�" * �� %� � �! � �" ' ! � � � � ��$ �# � �� ' � � # � � �" � '



Again, by De Morgan duality,

� ����������������������������������������������������������������������������������������������� �  $�& � � & %& � � � �  �& ����������������������������������������������������������������������������������������������� � '
In particular,

�"��  
� � $�" * �� %� � �! � �" ' ! � � � ��$ �# � � �� ' � � # � � �" � '
This is a symmetric, “classical” version of the familiar log-
ical relations condition:� ’s action carries Player strate-
gies on� to Player strategies on� , and its coaction car-
ries counter-strategies on� to counter-strategies on� . We
round out our account by defining the units, which all have
the one-point poset as their underlying domain. For the
tensor unit�, ��  
 $� "
 � %�, while � ��  
 $� "

� % � $� "
 � %�. For the unit for Plus (i.e. the initial object)
we have��  �, � ��  
 $� "
 � %�. The exponentials can
also be defined in our model (the basic ideas are along the
lines of [AJ92a]), but for lack of space we will refrain from
doing so. The reader will really understand our model by
checking that composition is associative, and seeing how
the problems with Blass games simply do not arise in our
setting.

We are now almost ready to define our category of con-
current games. Two further refinements are needed.

Stability Rather than taking all continuous closure oper-
ators as possible strategies, we will impose the domain-
theoretic condition ofstability [AC98]. (This will turn out
to be important for our proof of Full Completeness, al-
though we don’t know if it is a necessary condition; it is
deeply related to the “monomial condition” in [Gir95].) But
what does it mean for a closure operator to be stable? De-
fine thedomain��	� of a closure operator� on� to be the
set of all� � � such that� $� % � �

. An output function
for � is a continuous function� � � 
 � such that, for all
� in the domain of� , � $� %  � 
 � $�%. We say that� is
stable if it has a stable output function. (The link between
concurrent games and the NFGOI [AJ92a] is here; the out-
put functions for the strategies interpreting proofs will be
exactly the denotations of proofs in [AJ92a]. Moreover,
composition of closure operators is “tracked” by the com-
position of the corresponding output functions, defined as
in [AJ92a].) We shall henceforth restrict ourselves to stable
closure operators. This needs some conditions on the under-
lying domains: it suffices to assume that they are bounded
complete, and distributive in a suitable sense. For details,
see [AC98].

Extensionality To ensure that we get a genuine model of
Linear Logic in which all the required equations hold, we
adapt classical ideas from realizability to our setting. Rather
than taking a game to be$� � � � � � %, where� , � � are sim-
ply predicates picking out the sets of strategies and counter-
strategies, we will take games of the form$� �� �� � %,

where� and � � arepartial equivalence relationson the
(stable) closure operators on� � . We simply adapt the def-
initions given above for the Linear connectives from unary
predicates to binary relations, and check that they preserve
symmetry and transitivity. If� is a game of this form, we
write � � � to mean that��" � .

We are now in a position to define the category� of
concurrent games. Objects are structures$� �� �� � % of a
domain and two partial equivalence relations on stable clo-
sure operators, as already explained, subject to the follow-
ing condition: if � � � and� � � have the same maximal
fixpoints, then�� � , and similarly for� �. A morphism
from � to � is a closure operator� such that� � � � � .
Composition is defined as above. Identities are given by:

��" $� � � %  $� 
 � � � 
 � % '
They can be understood as “symmetric, bidirectional copy-
cat strategies” as in [AJ92b]. We can then define� as the
“extensional quotient of� ”, in which a morphism from�
to � is a partial equivalence class of�"�� .

Proposition 2.1 � is a-autonomous category with all lim-
its and colimits.

DiscussionTo motivate the passage to the extensional cat-
egory� , note that� only has weak products and coprod-
ucts. Indeed, the lifted sum which we used to model the
additives is non-associative, and we need to quotient out
the behaviour at the partial elements in order to obtain the
required structure. This might lead the reader to wonder
why we bother with the partial elements at all: why not just
work with the maximal elements, which in effect means us-
ing a relational model as in [Loa94b]? In fact,the rela-
tional model in [Loa94b] is not fully complete for MALL—
we have an explicit counter-example. Even though the be-
haviour of strategies on partial elements is factored out in� ,
it still plays a crucial role in determining what the strategies
are in the first place. We use it to cut the space of strategies
down to thestableclosure operators, and stability allows us
to capture the causality between� -links and their contexts
which is the key issue in MALL, and which is represented
for example in the boolean weights used in MALL proof
nets. In particular, we will find a beautiful correspondence
between thetraceof the stable output function for a strat-
egy, and the monomial weights appearing in the proof net
we shall “read back” from the strategy.

The model of MALL The fragment of Linear Logic we
will consider in this paper consists of formulas built from
propositional atoms� and their negations� &

with the
binary connectives

�
(Tensor), ����������������������������������������������������������������������������������������������� (Par), � (With) and�

(Plus). We refer to this fragment as MALL. A se-
quent � �  � ' ' ' � � � will be interpreted as the formula
�  ����������������������������������������������������������������������������������������������� � � � ����������������������������������������������������������������������������������������������� � � .



Since proofs of propositional formulas should beuni-
form over all substitution instances, we will treat propo-
sitional atoms as variables, so that in effect we are view-
ing propositional logic as the�  

fragment of second-
order propositional logic. In a by-now standard fashion
[BFSS88], a MALL formula in the propositional atoms
�  � ' ' ' �� � can be interpreted as a mixed-variance functor

� � $� �� * � %� 	
 � '
The set of such functors will form the objects of a cate-
gory � �� �, and collectively we will obtain an indexed-
autonomous category� with all limits and colimits. This
will provide the right algebraic structure to model proposi-
tional MALL.

We define the morphisms in� �� � in two stages. Firstly,
a dinatural family for a functor� in � �� � is a family of
strategies$� �" % �"��� indexed by�-tuples of games such

that, for all
�� , � �"� � 	 �" 
� �" , and moreover for all tuples of

strategies
�� � �� 
 �� ,

� �" � � $�� �" � �� %  � �� � � $�� � �� �� % '
We define a per�� for each such functor by

$� �" %�� $� �" % �� � �� ' � �"�� 	 �" 
� �" �
and similarly for� �� . We then define morphisms in� �� �
as partial equivalence classes of families of (stable, sym-
metric2) strategies, generalizing what we did for� . Defin-
ing the various connectives and constructions for the Linear
types pointwise on the functors and families in� �� �, we
obtain a-autonomous category with all limits and colim-
its.

There is a fine point here; as is well known, dinatural-
ity is not in general preserved by composition. However,
after we have proved Full Completeness—which will not
use the assumption that dinaturality is preserved by compo-
sition (!!)— then by pulling back to syntax it will be easy
to see that (for definable functors) closure under composi-
tion does hold, and hence each� �� � (restricted to defin-
able functors) is indeed a category. We could avoid this log-
ical detour by using a stronger property than dinaturality,
namely Reynolds-style relational parametricity [BFSS88],
for which closure under composition can be proved di-
rectly; however, this would complicate the description of
the model, and dinaturality is sufficient to prove Full Com-
pleteness.

Another hypothesis we will need to prove Full Com-
pleteness is that the closure operators aresymmetric, in
the sense of having output functions� satisfying�   � .

2By symmetric we mean a closure operator having an output function�
satisfying

� � � �
.

Again, the only problem with this condition is proving clo-
sure under composition; and again, once Full Completeness
is proved, we obtain closure under composition as a corol-
lary.

Petri gamesWe would like to give a very concrete decrip-
tion of the (dinatural) strategy

��� �� interpreting a cut-free
MALL proof � of the formula� in our games model. (This
can be related formally to our abstract domain-theoretic de-
scription using the theory developed in [NPW81].) The first
step is to see each position of a game as the state of a Petri
net. Of course, this is only possible for very special games,
which we callPetri gamesand define below.

Formally, a Petri net is a quadruple� 
$� � � � � �� � � ���% where � is the set ofplaces and �
the set oftransitions. To every transition� is associated
two nonempty sets� �� $�% � � of pre-conditionsand
� ��� $�% � � of post-conditions. A statein a Petri net� is
a subset of� . States are related by transition relations: We

write � �	
 � when�  � � � �� $�% and�  � � � ��� $�%
for some state� and transition�, where� means disjoint
union. A state� is accessible from�, which we write
� �� � , when there exists a sequence of transitions

� � '''� �� such that� � �	
 � � �
��	
 � .

A Petri net is calledunfoldedwhen

1. � �� $�% is a singleton for every� � � ,

2. � ��� $� %  � ��� $�) % � ! implies �  �) , for every
� � �) � � .

Graphically, this means that the patterns (1) and (2) are for-
bidden, in other words that the Petri net� looks like a for-
est.

(1) (2)

By restricting to unfolded Petri nets, the accessibility rela-
tion becomes an order. We call aroot any place" of the
unfolded Petri net� such that" does not appear in any
� ��� $�%, � � � . We single out the state�� � � consisting
of all root places of� , and call a state� of � accessible
when it is accessible from that special state�� . Now, the
accessibility relation�� defines a domain�� on the set
of accessible states of� . We calla Petri gameany game
� whose domain of positions�" is of the form�� for an
unfolded Petri net� , and call� theboardof � . Intuitively,
a Petri game� with board� has�� as least position, and
every state� of � reachable by a sequence of transitions

��
��	
 ''' ��	
 � as a position.

Now, we show how to construct the board of� � � and
��� given the boards�" and�� of � and� . For the
multiplicatives,�"��  �" ����������������������������������������������������������������������������������������������� � is the Petri net obtained



by juxtaposing the Petri nets�" and�� . In particular,
����� is the union of��� and��� .

NA NB

NA B

For the additives,�"��  �"�� is the juxtaposition of
�" and�� with a new place" � and two new transitions
����� and�	 
��� with pre-conditions:

� �� $����� %  � �� $�	
��� %  
" � �
and post-conditions:

� ��� $����� %  ��� � ��� $�	
��� %  ���

Graphically

NA NB

p
*

NA B&

For instance, given two Petri games�  and�) with boards
�" � and�"  :

A1 A2

the Petri game�  $$�  � �) %� $�  � �) %% ����������������������������������������������������������������������������������������������� �& ����������������������������������������������������������������������������������������������� �&
)

has board:

A2A1A2A1( ) A2A1( )( & ) &&

where the least position�� is indicated by the three tokens.

The concrete interpretationEvery formula� on the atoms
�  � '''�� � , is interpreted as a mixed-variance functor

��� �� � $� �� * � %� 	
 � '
and every proof� of � defines a strategy

��� �� �" of � $ �� � ��%
for every tuple

��  �  � '''� �� of games in� . In the partic-
ular case of Petri games�  � '''� �� , the strategy

��� �� �" plays

on the board� � 	 �" � �" 
 associated to� $ �� � ��% and defined
from the boards�"� ’s of the� � ’s as in the previous para-
graph. Let us describe briefly how this strategy plays on
�� 	 �" � �" 
.

The first step is to consider that the proof� is translated
as a proof-net with additive boxes, see [Gir87]. Observe that
every place" of � � 	 �" � �" 
 is associated either to an additive
link

�
of �, or to the residual of a place among the�"� ’s.

In the first case, each of the valuations “left” and “right”
of

�
corresponds to a transition������ and ��	
��� with pre-

condition
" �.
By definition, every position� � �� 	 �" � �" 
 induces a

transition sequence

��� � �� � �� �
� �	
 � � �

��	
 � (1)

which may not be unique, yet induces a partial valuation��
of the� -links of � which does not depend on the sequence
(1): The valuation assignsleft or right to a� -links

�
when

one of the transitions������ or ��	
��� appears among the� �’s
in the sequence (1).

Once this partial valuation�� of the�-link of � is com-
puted from�, a new proof-net�� with additive boxes is con-
structed by removing every additive box of� whose princi-
pal door is a�-formula assigned a value by�� .

At this point, the strategy�  ��� �� �" determines its an-
swer� $� % from the information it reads in�� , considering
every remaining additive box in�� as a “black box” with
no possibility to look inside.

Observe that the proof-net�� verifies the two following
fundamental properties:

1. every
�

-link visible in �� (i.e. not in a black box) is
eitherleft or right,

2. every visible literal of�� is related to another visible
literal with an axiom link.

Now, the position� $� % is defined as the least position�
above� in � � 	 �" � �" 
 such that:

1. the valuation of every
�

-link in �� appears in� ,

2. given an axiom link, the position on one side is the
same as the position on the other side (concurrent
copy-cat).

For instance, the only proof� of formula

$$�  � � ) %� $�  � � ) %% ����������������������������������������������������������������������������������������������� � & ����������������������������������������������������������������������������������������������� � &
)

is interpreted as a dinatural strategy
��� �� whose instance

�  ��� �� �" on the Petri games
��  �  � � ) (see previ-

ous paragraph) is a strategy of�  $$�  � �) %� $�  �
�) %% ����������������������������������������������������������������������������������������������� �& ����������������������������������������������������������������������������������������������� �&

) , which plays as below:



3 Proof-structures from strategies

In this section, we construct the proof-structure asso-
ciated to a dinatural family� for �. A technical lemma
(lemma 3.3) requires to restrict dinaturality to the category
of civil games, defined as follows. A strategy� � � is
civil when for every� � �&

, �� ��  is not
�

. A game
�  $�" ��" �� �" % is civil when it contains a civil strat-
egy and a civil counter-strategy. A civil game istotal when
�� ��  is maximal for every� � � and � � �&

. The two
classes of civil and total games are closed under the MALL
constructs

�
, ����������������������������������������������������������������������������������������������� ,

�
, � and $	%& . Moreover, a strategy of

� � � is a strategy of� ����������������������������������������������������������������������������������������������� � when� and� are total.
A

�
-dinatural family for a functor� in � �� � is defined

as a family of strategies$� �" % �"�� � indexed by tuples
�� 

�  � '''� �� of civil games such that, for all
�� � � � , � �" �

� $ �� � ��%, and moreover

� �" � � $�� �" � �� %  � �� � � $�� � �� �� % '
for all tuple

��  �  � '''� �� of morphisms� � � � � 	
 � � in�
. Such a

�
-dinatural family� is uniformwhen the closure

operator� �" depends only on the domain�" � for � � � ��. The following lemma ensures that every dinatural family
� restricts to a uniform

�
-dinatural family.

Lemma 3.1 (uniformity) Let � be a dinatural family and�� be a tuple�  � '''� �� of games. The strategy� �" does not
depend on the pers�"� and� �"� , only on the domains�"� .

We fix in sections 3.1, 3.2 and 3.4:
� a formula� built from �  � '''�� � and� & � '''� � &�
with the connectives

�
, ����������������������������������������������������������������������������������������������� ,

�
, � ,

� a uniform
�

-dinatural family� for the functor� in
� �� �.

Every valuation� of the� -links of � defines a M
�

LL for-
mula� � , also interpreted as a functor in� �� �. We leave to
the reader the inductive definition of the associated natural
transformation ��

�	�� � � 
	
 � �
using the projection maps� � ��� 	
 � and � ) �
��� 	
 � in � . Composing the

�
-dinatural family�

with
��
�	�� defines a

�
-dinatural family for the� -free� � .

It is natural then to describe the
�

-dinatural family� in the
special case of a M

�
LL formula �.

We need a few notations. Anannotatedformula is a pair
$� � �����% consisting of a MALL formula� and a one-to-
one function����� associating an integer� to every occur-
rence of� � and� &� in �. An annotated formula$� � �����%

is best seen as a formula� where occurrences of� � (resp.
� &� ) associated to� are replaced by�

�� (resp.$� &� %�).
Let  be the number of literal occurrences in�. All

through this section, we consider the formula� annotated in

� � '''� � in such a way that each index� appears to the left
of the index� � �. Given this “canonical” annotation, two
functions� � 
� � '''� � 
 
� � '''� � � and� � 
� � '''� � 


� � 	� indicate which literal the index� annotates:�

�� 	�

when� $�%  � , and$� &� 	�
 %� when� $�%  	.

3.1 The multiplicative and M�LL fragments

Starting with the case of a multiplicative formula�, we
construct the multiplicative proof-structure�� associated
to the

�
-dinatural family� . This construction does not re-

quire any of the game-theoretic properties yet, and we sim-
ply follow the steps of R. Loader who carried out the con-
struction in the relational model, see [Loa94b].

Lemma 3.2 There exists a fixpoint-free involution� �

� � '''� � 
 
� � '''� � such that for any tuple

�� 
�  � '''� � � of civil games, the set of maximal fixpoints of
� �" is


 $�  � '''� �� % � ��  �� 	�
 for all � � � �  �

We suppose now that the formula� is constructed from
�  � '''�� � and� & � '''� � &� with the connectives

�
, ����������������������������������������������������������������������������������������������� and�

. We associate a�-free proof-structure to� by reducing
that problem to the multiplicative case.

By duality, a total valuation� of the
�

-links of � is also
a total valuation� of the� -links of �&

. Thus, the valuation
� induces a functor� � � $� �� * � %� 	
 �

and a natural
transformation��	�� � � � 
	
 � defined as:

� �  $$�& %� %& ��	��  $
��
�	�	� %&

The main result of the section (factorization) implies with
lemma 3.2 that the uniform

�
-dinatural family� describes

a M
�

LL proof-structure.

Lemma 3.3 (factorization) Given a
�

-dinatural family �
for the�-free�, there exists a valuation� of the

�
-link of

� such that the morphism� �" factors uniquely as

�
� �� �� � � $ �� � ��%

	
���� 
 �� � �� �� � $ �� � ��% (2)

at every instance
�� of civil games. Moreover, the family�

for � � defined in (2) is uniform and
�

-dinatural.

PROOF We take the total game�  �&
with domain
� �

and play� �� off against the counterstrategy$� "
 �%. The
maximal element we obtain as a result defines the valuation



� . We then prove factorization (2) at every instance by es-
tablishing that$��	�� % �" � �� is a split mono when

�� and
��

are tuples ofcivil games. This is where the restriction from
dinaturality to

�
-dinaturality appears in the proof.

3.2 Notations

Given an instance of�
�� (resp. � &� ) in the annotated

formula�, and tuples
�� ,

�� of games, we associate to any
element� � �" � (resp.� � �� � ) the corresponding ele-

ment$� �� "
 �%��" � �� (resp.$$� &� %� "
 �%��" � �� ) of � � 	 �" � �� 
 as

follows, (the definition by induction is similar for$� &� %� %):

$� �
� "
 �%� ��� ��" � �� 

� � if $� � � %  $� � � � � %
� otherwise

$� �� "
 �%� ����" � ��  $� �� "
 �%� � ����������������������������������������������������������������������������������������������� ��" � ��

 � $$� �� "
 �%� ��" � �� � � % if �
�� is in �  

$� � $� �� "
 �%��" � �� % if �
�� is in � )

$� �� "
 �%� ����" � ��  $� �� "
 �%� ����" � ��

 � $��� $� �� "
 �%� ��" � �� %& if �
�� is in �  

$��
�
$� �� "
 �%��" � �� %& if �

�� is in � )
The definition of$� �� "
 �%��" � �� is easily adapted to asso-

ciate a prime element$� "
 ����%��" � �� of � � 	 �" � �� 
 to the
valuation$� "
 ����% of an additive link

�
of �. The base

case of the induction is:

$� "
 ����%� ����" � ��  $���� %&

The prime element$� "
 �
��	�%��" � �� corresponding to

$� "
 �
��	�% is defined similarly.

To every partial valuation� of the� -links of �, to every
 -tuple

�!  ! � '''� !� and
�
#  #  � '''� #� of closure op-

erators! � � � �"
 ��� and# � � � ��
 ��� , we associate a closure
operator �! � # ��� � � �� 	 �" � �� 

as follows:
�

�! � # �� ��  ! � and
�! � # � 	� 	� 
�  # �,

� Letting �  and�) be the respective restrictions of� to �  
and� ) : �! � # �� � ����������������������������������������������������������������������������������������������� �� 

�! � # �� ����
is equal to the smash product�! � # �� ��� *

�! � # ���

�! � # �� ���� � � "
 � � ���� "
 ��� �! � # �� �� � � �
��

�
� "
 ��

� �! � # ��� � '
When� does not assign a value to the root�-link:�! � # �� ���� � $� � � % "
 $� � � %
When� assigns the value���� to the root� -link:�! � # �� ���� � � "
 ��� �! � # �� �� � � �

���� "
 ��� �! � # �� ��� � �
��

�
� "
 � '

When� assigns the value
�
��	� to the root�-link:�! � # �� ���� � � "
 ��

� �! � # ��� � �
���� "
 � �
��

�
� "
 ��

� �! � # ��� � '
The motivation for this construction is that given�-tuples�� and

�� of total games, and atotal valuation� , the closure
operator

�! � # ��� is a strategy of� $ �� � �� %& when the! � ’s
and# � ’s are strategies! � � �&� 	�
 , # � � � &� 	�
 for all � � � �
 .

3.3 MALL proof-structures

We recall the definition of a MALL proof-structure in
[Gir95]. A proof-structure� consists of:

1. a set of formula occurrences,

2. a set of links; each of these links takes its premise(s)
and conclusion(s) among the formula occurrences of
�;

3. for each formula occurrence� of �, a weight� $� %,
i.e. a non-zero element of the boolean algebra gener-
ated by the eigenweights"  � '''�" � of the � -links of
�

satisfying the following conditions:

1. each formula occurrence is the premise of at most one
link and the conclusion of at least one link

2. if � is a conclusion of�, then� $� %  �,
3. if � is any weight occurring in�, then� is a mono-

mial of eigenweights and negations of eigenweights,

4. if �" � '� is any weight occurring in�, then� � � $� %,

5. � $� %  � � $� %, the sum being taken over the set of
links with conclusion� . It is required here that the
sum is disjoint.

6. � $� % � �, moreover, if
�

is any non-axiom link, with
premises� (or) � then



� if
�

is any
�

or ����������������������������������������������������������������������������������������������� , then� $� %  � $� %  � $� %,
� if

�
is
�  , then� $� %  � $� %,

� if
�

is
�
) , then� $� %  � $� %,

� if
�

is a � -link, then � $� %  � $� % '" � and
� $� %  � $� % '�" �

Our condition 4 is equivalent to the requirement appearing
in [Gir95] that for any element of the boolean algebra gen-
erated by the weights occurring in�, and any� -link

�
,

� '�� $� % does not depend on" � .

3.4 Main construction

We associate an event structureEVENT� to the formula
� canonically annotated. So,� is a tree of

� �� � ����������������������������������������������������������������������������������������������� ��-
links and MALL formulas, with the formula� at its root,
the literals�

�� and $� &� %� at its leaves, and every path an
alternating sequence of formulas and links.

If we replace every subtree
� $� � � % by two subtrees�  $� % and

�
) $� % connected to the same ancestor, the re-

sulting treeTREE� is labelled with
� � ����������������������������������������������������������������������������������������������� ��  �� ) ��-links

and MALL formulas (each literal annotated). Anode in
TREE� means either a link or a formula in the tree. Nodes
are ordered by the tree-nesting ordering. Anaxiom link in
TREE� is a 2-element set
� ��

� � $� &� %� � of annotated liter-
als inTREE� . An additive boundary is a�-link or a formula
� � � in TREE� .�

The event structureEVENT� is defined as follows:

1. the events are the nodes and axiom links ofTREE� ,

2. � � � � when� and� � are nodes and� nests� �, or when
� is a node and� � is an axiom link containing a literal
nested by�, or � and� � are the same axiom link.

3. ��� � when� and� � are nodes and� $ � � is an additive
boundary, when� is a node and� � is an axiom link con-
taining a literal�

�� such that��� �� , when� and� � are
axiom links whose intersection�  � � is singleton, or
when� and� � are axiom links containing incompatible
literals.

Observe that every maximal state inEVENT� describes a
multiplicative proof-structure.

The equivalence relation� relates two nodes ofTREE�
when there is a path between them that does not cross an
additive boundary. More formally, it is the least equivalence
relation on the events ofEVENT� such that:

� � � � when� is a formula premise of
�

not a�-link,

� � � �
when� is the conclusion of a

�
, ����������������������������������������������������������������������������������������������� or � -link�

.

In particular, every axiom link is the only element of its� -
class.

�
Let � be the total game associated based on the flat do-

main of integers with strategies all$� "
 � %, � � �. Let
� ) be� ����������������������������������������������������������������������������������������������� �

&
. This instance� ) will play a particular role

in the construction of the proof-structure corresponding to
� . Every prime element of the form

$� ��
� "
 $�) � � %%������ or $$� &� %�� "
 $� � �) %%

�
�� ���

is called an input of� � 	 �� ���
 and every prime element of
the form

$� ��
� "
 $� � �) %%

�
����� or $$� &� %�� "
 $�) � � %%��� ���

an output of� � 	 �� ���
.
Given a valuation� of the� -links in �, the closure op-

erator� � on� �� 	 �����
 is defined as

� � 
�! � # ���

(here� is considered canonically annotated) with the strate-
gies! � � � ) and# � � �&

) for all � � � �  :

! � � $� � � % "
 $� 
 � � � % # � � $� � � % "
 $� � � 
 �%
Note that� � is a counter-strategy of� $ �� ) �

�
� )% when the

valuation� is total. Moreover,

Lemma 3.4 (stability) The map� "
 �� �� �� �  from valu-
ations to�� 	�� ���
 is stable.

PROOF The proof relies heavily on the connection between
our model and NFGOI, the definition of stable closure oper-
ators, the fact that the category of domains and stable maps
is cartesian-closed, and finally the choice of the! �’s and
# �’s.
�

We introduce twolinear functionsEV�� and EV�� that
associate a state ofEVENT� to any element of� � 	 �� ���
.
These functions are defined as follows:

� � is sent to the union of the� -class of the conclusion,

� for
�  � , the prime $� "
 ���� %������ is sent

to the � -class of
�

’s first premise, and the prime
$� "
 �

��	�%������ to the � -class of
�

’s second
premise,

� for
�  �

, the prime$� "
 ����%������ is sent to the
� -class of the corresponding

�  -link, and the prime
$� "
 �

��	�%������ is sent to the� -class of the corre-
sponding

�
)-link,

� the output prime$� ��
� "
 $� � �) %%

�
����� for an index�)

of some literal$� &� %� is sent byEV�� to the axiom link


� ��
� � $� &� %� �,



� the output prime$$� &� %�� "
 $�) � � %%������ for an index

�) of some literal�
�� is sent byEV�� to the axiom link


 $� &� %�� �� �� �,
� any other prime is sent to the empty state.

The following (stable) functionPRF�� associates to any
partial valuation� of the�-links in � a state inEVENT� :

PRF�� � � "
 EV�� �� �� �� � 
�

The proof-structure�� is constructed as follows:

1. its formula occurrences (resp. links) are the elements
of � � $PRF�� %, thetrace3 of the stable functionPRF�� , of
the form $� � � % where� is a formula occurrence (resp.
a link) of EVENT� . Every node$� � � % is labelled as�,

2. the weight� $� � � % is computed from the valuation� as
follows:

� $� � � %  �
" 	� �� �
 * � �" 	� �� 


where the first product is taken over the� -links $� � �  %
such that� extends�  � $� "
 ����%, and the second
product over the�-links $� � �) % such that� extends
�) � $� "
 �

��	�%.
3. a formula occurrence$� � �  % is the premise of a link

$� � �) % when� is a premise of
�

in � and�  extends
�),

4. a formula occurrence$� � �  % is the conclusion of a link
$� � �) % when� is a conclusion of

�
in � and�) ex-

tends�  .
For lack of space, we omit the lengthy verification that

Lemma 3.5 �� defines a MALL proof-structure.

We also omit the proof that the alternative definition of��
as the trace of

PRF�� � � "

EV�� �� �� �� � 

leads to the same proof-structure when the strategy� �� is
symmetric.

4 Correctness criteria

4.1 MALL proof-nets

Let � be a valuation of the�-links of a proof-structure
�. � induces a function (still denoted�) from the weights
of � to 
� � ��. Theslice� $� % is obtained by restricting�
to the formulas� verifying � $� $� %%  �, with the obvious
modification for the remaining� -links: only one premise is
present.

A switchingof a proof-structure� consists in
3It is here that stability is used in our proof.

1. the choice of a valuation�� for � ,

2. the selection of a choice� $� % � 
� � � � for all ����������������������������������������������������������������������������������������������� -links
of �� $� %

3. the selection for each�-link
�

of �� $� % of an occur-
rence� $� %, thejumpof

�
, depending on" � in �� $� %.

There is always anormalchoice of jump for
�

, namely
the premise� of

�
such that�� $� $� %%  �. Any

other choice is calledproper.

A normal switchingis a switching with no proper jump.

Definition 4.1 Let� be a switching of a proof-structure� .
We define the graph�� as follows:

1. the vertices of�� are the occurrences and links of
�� $� %,

2. for all links of�� $� %, we draw an edge between the
link and each of its conclusions,

3. for all
� �-links of �� $� %, we draw an edge between

the link and its premise,

4. for all
�

-links of�� $� %, we draw an edge between the
link and its left premise, and between the link and its
right premise,

5. for all ����������������������������������������������������������������������������������������������� -links
�

of �� $� %, we draw an edge be-
tween the link and the premise (left or right) selected
by� $� %,

6. for all �-links
�

of �� $� %, we draw an edge between
the link and the jump� $� % selected by� .

A proof-netis a proof-structure� such that for all switch-
ings� , the induced graph is acyclic and connected.

4.2 Acyclicity

We prove in this section and the next that the proof-
structure�� defined in section 3 satisfies the two condi-
tions to be a proof-net: acyclicity by exhibiting a deadlock
on the assumption of a cycle, connectedness by propagating
the “error” value

�
around the net on the assumption that

there is more than one connected component.

We fix in subsections 4.2 and 4.3:
� a formula� built from �  � '''�� � and� & � '''� � &�
with the connectives

�
, ����������������������������������������������������������������������������������������������� ,

�
, � ,

� a symmetric dinatural family� for the functor� in
� �� �.

Given two total games� and� , and two strategies� � �&
and� � � &

such that� is stable as a function�" 
 � �" ,
we construct the strategy$� � � % � $� � � %& as follows:

$� � � % "

��
	

�
if ��  �

or � �  �
$�� � � � % if �� � �

is not maximal
$�� � � % otherwise



Let � be any set of disjoint
�

-links in the formula�, � a
total valuation of the�-nodes of�, strategies! � � � � and
# � � � &� stable as functions�"� 
 � �"� and�� � 
 � �� �
for all � � � �  . The inductive definition of the strategy�! � # ��� �� � � $� � � %&

is similar to the definition of
�! � # ��� � � $� � � %& , except

for the case of a
�

-link in � :
� letting �  and�) (resp. �  and� )) be the respective re-
strictions of� (resp. of� ) to �  and� ) :�! � # ����� ��  � �! � # �� �� � �� � � �! � # ��� �� if

�
is in ��! � # �� �� � �� � *

�! � # ��� �� otherwise

For instance,
�! � # ��� 

�! � # ��� �� when� is empty.

Lemma 4.2 Every switching of�� is acyclic.

PROOF (sketch) For lack of space, we omit the nice graph-
theoretic reasoning which shows that, given a switching�
of �� , every potential cycle in the “switching” graph$�� %�
may be transformed into an “oriented” cycle

�
of the fol-

lowing form (oriented means that all jumps are headed in
the same direction):

axax ax

ax

& &

Let us label
� � each

�
-link appearing as a “rebouncing”

tensor in the figure:
� �

, ...,
�� �

 . We have to consider
two possible cases for any� � 
� � '''�� 	 ��:

ax ax

k

&

k+ 1k k+1

L
(3)

In the first case, each of the literals�
��
� and $� &� %� form-

ing the axiom link is nested by one of
� � or

� ��
 . We

define" )� (resp. " )��  ) as the input prime (resp. out-
put prime) of the literal nested by

� � (resp.
� ��

 ). In
the second case,

� � nests the� -link
�

,
� ��

 nests one of
the literals forming the axiom link, and the jump from

�
to

the axiom link connects the cycle. We define" )��  as the
output prime of the literal nested by

� ��
 , and" )� as the

prime $� "
 �%������, where� is the valuation of
�

(����
or

�
��	�) compatible with the valuation� associated to� .

We prove that the cycle
�

does not exist by constructing a
strategy� � � $ �� ) �

�
� )%

&
whose interaction against� �� does

not reach a maximal element (i.e. deadlocks), contradicting
the totality of� $ �� ) �

�
� )%. Calling� the set
� � � '''��� � �

the strategy� is defined as
�! � # ��� �� where the! � ’s and# �’s

are defined as in section 3.4. Suppose that� is an element
of � � 	 �� ���
 verifying

� � � 
� � '''� �� 	 �� � " � �� � � �� � �� ��  '
Observe that every" )��  is an output and every" )� an input
or the prime associated to the valuation of a� -link of �.
This implies that for all� � � � � 	 �, " )��  �� � � and
" )� �� � ���. We then deduce from the construction of��
and the definition of� that:

� � � 
� � '''� �� 	 �� �
� " � �� � ��� � �� � �� �� �
" � �� � � � �� � �� �� '

We conclude that�� �� ��  is not maximal.

4.3 Connectedness

Lemma 4.3 Every normal switching of�� is connected.

PROOF (sketch) By projection, the lemma reduces to prov-
ing that every M

�
LL proof-structure defined from the se-

mantics has connected switchings. We restrict ourself to
the multiplicative case here, for lack of space. Although the
adaptation of the proof to M

�
LL is not entirely straightfor-

ward, the essence of the proof appears below.
Let $� �" % �"��� be a dinatural family for a multiplicative

formula � interpreted in� �� �, �  �� the correspond-
ing proof-structure, and� a switching such that�� is non-
connected.

Composing� with the natural transformations� �
$� ����������������������������������������������������������������������������������������������� + % 
	
 � ����������������������������������������������������������������������������������������������� $��+ % and�� $� ����������������������������������������������������������������������������������������������� + % 
	
 + ����������������������������������������������������������������������������������������������� $� �
� % transform� into a dinatural family� for a functor�
corresponding to the switching� . Here,� is a

�
-fold ����������������������������������������������������������������������������������������������� -

product of
�

-products of literals, and the proof-structure as-
sociated to� by lemma 3.2 is homeomorphic to the “switch-
ing” graph�� .

Define the game�  �&
with �" the flat domain of

integers, and strategies the closure operators$� "
 � 
 �%,
for � any integer, with�" the equality on them. Observe
that� is not total, not even civil. We use the notation�� 	
or � ����������������������������������������������������������������������������������������������� 	 to mean respectively the�-fold

�
or ����������������������������������������������������������������������������������������������� -product

of a game� .
For every pair of integers� 
 � and� , there is a strategy

��� of � ����������������������������������������������������������������������������������������������� 	 whose set of maximal fixpoints is exactly:


 $�  � '''� � � % �
�� �
���  ��  � �

Now, suppose that�� is disconnected, and that� $ �� � ��%
is the ����������������������������������������������������������������������������������������������� -product of�� 	� ����������������������������������������������������������������������������������������������� � � � ����������������������������������������������������������������������������������������������� �� 	

. We may assume



without loss of generality that the first� �-powers�� 	� and
axiom links form a connected component of�� .

Set the strategy� � $�� 	� ����������������������������������������������������������������������������������������������� � � � ����������������������������������������������������������������������������������������������� �� 	�� %& as

�  � ��� � * � � � * � ���
��� (4)

Here, we are careful to choose�  � '''�� � such that
�� �
���  � � is odd (5)

Let ! be any counter-strategy of�� 	
. A simple argu-

ment shows that the result of playing� * ! � � $ ��� � ��� %&
against� �" is either a maximal element$�  � '''� �� % or

�
.

Assume that it is a maximal element$�  � '''� �� %. By
lemma 3.2, there exists an involution� of 
� � '''� � such
that ��  �� 	�
 for every � � 
� � '''� �. The involu-
tion � describes the axiom links of�� , therefore restricts
by definition of � to an involution of 
� � '''� ��� � where

���  � �� ���  � �. We obtain that the sum��� �����  � � is even,
which forbids by (5)$�  � '''� �� % to be a fixpoint of� * !.
We conclude that the result of playing� * ! against� �" is
necessarily

�
.

Let � be the strategy of�� 	
obtained by composing�

and� �" . We have just shown that
�

is the result of playing

� off against any strategy! � � ����������������������������������������������������������������������������������������������� 	
. This implies that

� is $� "
 � %, hence not a strategy of�� 	
, yielding the

required contradiction.

Theorem 4.4 �� is a MALL proof-net.

PROOF Lemmas 4.2 and 4.3 imply by a simple graph-
theoretic argument that every (not necessarily normal)
switching of�� is connected. We conclude.

5 Main result

Theorem 5.1 (Full Completeness)Let � and� be MALL
formulas. Every morphism

��� �� 	
 ��� �� in � �� � is the
interpretation

��� �� of a MALL proof� of the formula� �
� .

PROOF By theorem 4.4 and the Sequentialization Theorem
in [Gir95], every symmetric dinatural family� in the per-
class

�� � � ��� �� 	
 ��� �� defines a proof� of � � � . In
turn, the proof� is interpreted as a per-class

�� �  ����� of
symmetric dinatural families from

��� �� to
��� ��. The proof

is reduced to showing that the two classes
�� � and

�� � are
equal. A simple argument on the slices of� shows that�
and � have the same maximal fixpoints at every instance�� . We then use the fact that two strategies of a game are
equivalent when they have the same maximal fixpoints, and
conclude that

�� �  �� �.
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