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ABSTRACT
Following the success of the so-called algebraic approach to the

study of decision constraint satisfaction problems (CSPs), exact

optimization of valued CSPs, and most recently promise CSPs, we

propose an algebraic framework for valued promise CSPs.

To every valued promise CSP we associate an algebraic object,

its so-called valued minion. Our main result shows that the exis-

tence of a homomorphism between the associated valued minions

implies a polynomial-time reduction between the original CSPs. We

also show that this general reduction theorem includes important

inapproximability results, for instance, the inapproximability of

almost solvable systems of linear equations beyond the random

assignment threshold.

CCS CONCEPTS
• Theory of computation→ Problems, reductions and com-
pleteness; Constraint and logic programming.

KEYWORDS
approximation, constraint satisfaction, algebraic approach, poly-

morphisms

∗
Libor Barto and Caterina Viola were funded by the European Union (ERC, CoCoSym,

771005). Libor Barto was also funded by (ERC, POCOCOP, 101071674). Caterina Viola

was also funded by ICSC – Centro Nazionale di Ricerca in High-Performance Comput-

ing, Big Data and Quantum Computing, co-founded by European Union - NextGener-

ationEU. Views and opinions expressed are however those of the authors only and do

not necessarily reflect those of the European Union or the European Research Council

Executive Agency. Neither the European Union nor the granting authority can be

held responsible for the m. This work was supported by UKRI EP/X024431/1. For the

purpose of Open Access, the authors have applied a CC BY public copyright licence

to any Author Accepted Manuscript version arising from this submission. All data is

provided in full in the results section of this paper. The full version of the paper is

available at arXiv:2401.15186 [6].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

LICS ’24, July 8–11, 2024, Tallinn, Estonia
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0660-8/24/07

https://doi.org/10.1145/3661814.3662076

ACM Reference Format:
Libor Barto, Silvia Butti, Alexandr Kazda, Caterina Viola, and Stanislav

Živný. 2024. Algebraic Approach toApproximation. In 39th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS ’24), July 8–11, 2024, Tallinn,
Estonia.ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3661814.

3662076

1 INTRODUCTION
What mathematical structure captures efficient computation? An-

swering this question is the holy grail of theoretical computer sci-

ence. Constraint Satisfaction Problems, or CSPs for short, provide

an excellent framework to attempt this ambitious research endeav-

our. On the one hand, CSPs are general enough to include many

fundamental problems of interest and allow for general patterns to

occur, which rarely happens when studying concrete problems in

isolation. On the other hand, CSPs are structured enough so that

interesting and nontrivial results can be established. Indeed, while

CSPs do not capture
1
all computational problems, both algorithmic

and hardness techniques developed in the context of constraint

satisfaction are often used beyond the realm of CSPs.

Putting the area of constraint solving aside, there are two main

strands of research on the computational complexity of CSPs. The

first strand studies decision CSPs on finite [32] and infinite [16]

domains, exact solvability of optimization CSPs (known as valued

CSPs [29]), and most recently qualitative approximation of decision

CSPs (known as promise CSPs, or PCSPs for short [3, 4, 23]). The

highlights of this strand include, firstly, complexity classifications

of CSPs, e.g., dichotomies for robust solvability of CSPs [8], valued

CSPs [43, 45, 51], infinite-domain CSPs [18–20], promise CSPs [23,

33], and in particular a dichotomy for all finite-domain CSPs [26, 54],

which gave a positive answer to the long-standing Feder-Vardi

conjecture [32]. Secondly, characterizations of the power of various

algorithms, e.g., [7, 12, 21, 28, 37, 44, 52].

The second strand studies quantitative approximation of CSPs.

The highlights include, e.g., the PCP theorem [1, 2, 31], Håstad’s

optimal inapproximability results [35], Raghavendra’s result that a

semidefinite programming relaxation is optimal for all CSPs [48]

under Khot’s Unique Games Conjecture [40], inapproximability

1
Up to polynomial-time Turing reductions, CSPs on infinite domains do capture all
computational problems [17], cf. also [34].
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of certain valued CSPs (under the UGC) [42], optimal inapprox-

imability of certain MaxCSPs [27], or the recent line of work on

inapproximability of perfectly satisfiable MaxCSPs [13–15].

While the two strands use different mathematical tools (algebraic

vs. analytical), there are some common features, e.g., dictatorship

testing plays an important role in both PCSPs and approximability.

Our paper confirms that this is not a coincidence.

With the general goal to better understand what makes com-

putational problems easy or hard, we aim to provide uniform de-

scriptions of algorithms, tractability boundaries, and reductions.

For CSPs studied in the first strand described above, all of these

can be described uniformly by means of polymorphisms, which can

be, informally, thought of as multivariate symmetries of solution

spaces of CSPs (although the precise definitions and conditions de-

pend on the type of considered CSPs). Interestingly, it was observed

a posteriori in [24] that Raghavendra’s result from [48], which falls

in the second strand, can be phrased in terms of (a certain type of)

polymorphisms, although it remained unclear whether and how

polymorphisms determine complexity without the Unique Games

Conjecture. The notion of polymorphisms coming from [24] is close

to ours, cf. [6].

In the present paper, we introduce and initiate the study of the

very general framework of valued PCSPs. It includes, as special

cases, (non-valued) PCSPs (and thus also CSPs), valued CSPs, ap-

proximation of CSPs (both constant factor and gap variants), Gap

Label Cover, and Unique Games. The only previous works on valued

PCSPs are the algorithmic results in [5, 53] and the unpublished

manuscript of Kazda developing an algebraic theory for constant

factor approximation of valued PCSPs [39], cf. [6].

As our main result, we define a notion of polymorphisms for

valued PCSPs and show that it leads to polynomial-time reductions.

Thus, we take the first step in providing a uniform description of

reductions among the very large class of computational problems

captured by valued PCSPs.

In order to help the reader and to explain clearly the differences

between the previous work on PCSPs and our more general setting

of valued PCSPs, we recap in Section 2 the basics of the algebraic

theory for non-valued PCSPs. This should be useful in particular

as we work in the multi-sorted setting
2
(cf. the discussion at the

end of Section 2.3) and with slightly more general notions than is

common in the literature. In Section 3 we define valued PCSPs and

plurimorphisms, the new notion of multivariate symmetry. Then,

in Section 4, we prove our first main result, namely that a homo-

morphism between sets of plurimorphisms of two valued PCSPs

implies a polynomial-time reduction between these valued PCSPs.

The core of this reduction theorem is that every valued PCSP is

polynomial-time equivalent to a valued version of the Minor Con-

dition problem that played a key role in the algebraic approach to

non-valued PCSPs [4]. This allows us to circumvent routes via de-

finability as was done in the original algebraic approach to decision

non-promise CSPs and valued CSPs [25, 29]. Finally, in Section 5 we

give examples of valued homomorphisms, most notably our second

main result, which is a valued homomorphism that captures, e.g.,

Håstad’s result on inapproximability of almost-satisfiable systems

of linear equations [35].

2
Different variables can have different domains.

2 PROMISE CSP
In this section we review the basics of the theory of crisp (non-

valued) Promise CSPs, in a way that mimics our theory-building in

the more general valued setting in the next section. The definitions

and theorems, whose proofs are provided in [6], essentially follow

parts of [4] with some adjustments.
3

2.1 Preliminaries
For two sets 𝐴 and 𝑍 , the set 𝐴𝑍

is the set of all functions from 𝑍

to 𝐴. Sometimes it is more natural to regard elements 𝑓 ∈ 𝐴𝑍
as

tuples of elements of 𝐴 indexed by elements of 𝑍 (we also say a

𝑍 -tuple of elements of 𝐴). In such a case we use boldface and write,

e.g., a ∈ 𝐴𝑍
. However, there are situations when both viewpoints

(as a function or as a tuple) are used within one formula or a proof.

For a finite set 𝑍 , a 𝑍 -ary relation on 𝐴 is a subset 𝜙 of 𝐴𝑍
. For

a ∈ 𝐴𝑍
and a 𝑍 -ary relation 𝜙 , we usually write 𝜙 (a) instead of

a ∈ 𝜙 . In order to succinctly write down a 𝑍 -tuple, one can fix a

linear order on 𝑍 and write a tuple as a sequence of length |𝑍 |, e.g.,
a = (a(𝑧1), a(𝑧2), . . . , a(𝑧𝑛)), where 𝑧1, . . . , 𝑧𝑛 is the enumeration

of 𝑍 in increasing order.

Functions are composed from right to left: If 𝑓 : 𝐴 → 𝐵 and

𝑔 : 𝐵 → 𝐶 then the composed function 𝐴 → 𝐶 is denoted by 𝑔 ◦ 𝑓

or just 𝑔𝑓 . Note that for a 𝑍 -tuple a ∈ 𝐴𝑍
and a function 𝑓 : 𝐴 → 𝐵,

the 𝑍 -tuple 𝑓 ◦ a ∈ 𝐵𝑍 is the tuple obtained by applying 𝑓 to a
component-wise.

The class of finite sets is denoted by FinSet. We denote by [𝑛]
the set {1, 2, . . . , 𝑛}.

2.2 Relational structures
For a set 𝜏 , a 𝜏-sorted set 𝐴 is a collection of sets, one set 𝐴𝑡 for

each sort 𝑡 ∈ 𝜏 , and a 𝜏-sorted function between two 𝜏-sorted sets

𝐴 and 𝐵 is a collection of functions𝐴𝑡 → 𝐵𝑡 , 𝑡 ∈ 𝜏 . We define these

notions formally as follows.

Definition 2.1 (Multi-sorted setting). Let 𝜏 be a set (of sorts sym-
bols). A 𝜏-sorted set is a set𝐴 together with a mapping sort : 𝐴 → 𝜏 .

For 𝑡 ∈ 𝜏 , the 𝑡-sort of 𝐴 is 𝐴𝑡 = {𝑎 ∈ 𝐴 | sort(𝑎) = 𝑡}.
For two 𝜏-sorted sets 𝐴, 𝐵, a 𝜏-sorted function from 𝐴 to 𝐵 is a

function 𝑓 : 𝐴 → 𝐵 that preserves sorts, i.e., sort(𝑓 (𝑎)) = sort(𝑎)
for every 𝑎 ∈ 𝐴. The set of 𝜏-sorted mappings from𝐴 to 𝐵 is denoted

by 𝐵𝐴 , as above. Note that this set is not 𝜏-sorted.

For a 𝜏-sorted set 𝐴 and a set 𝑁 , their product is the 𝜏-sorted set

𝐴 ×𝑁 with sort(𝑎, 𝑛) = 𝑎 for every 𝑎 ∈ 𝐴, 𝑛 ∈ 𝑁 . This time, by 𝐴𝑁

we denote the 𝜏-sorted set of those mappings 𝑓 : 𝑁 → 𝐴 such that

𝑓 (𝑁 ) ⊆ 𝐴𝑡 for some 𝑡 , with sort(𝑓 ) = 𝑡 .

For two 𝜏-sorted sets 𝐴 and 𝑍 , we regard the elements of 𝐴𝑍

also as 𝑍 -tuples and subsets of 𝐴𝑍
as 𝑍 -ary relations. Similarly as

before, 𝑍 -tuples can be presented as sequences of length |𝑍 | by
fixing a linear order on 𝑍 .

Definition 2.2 (Multi-sorted signature). A multi-sorted signature
Σ is a triple Σ = (𝜎, 𝜏, ar) where 𝜎 is a set of relational symbols, 𝜏 is

3
The adjustment is mostly in that the arity of a relation or a function can be any

finite set 𝑁 . It is more standard in the CSP literature to only use 𝑛-ary relations and

functions for a non-negative integer 𝑛. We do not see any advantages for the latter (at

least in our context) and a lot of disadvantages, such as the need to often choose enu-

merations, awkward expressions, unnecessary notions, unnecessary abusing notation,

void calculations, etc.
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a set of sort symbols, and ar assigns to each symbol 𝜙 ∈ 𝜎 a finite

𝜏-sorted set ar(𝜙), called the arity of 𝜙 .

Such a signature is finite if 𝜎 is finite.

Symbols Σ, 𝜎, 𝜏, ar are reserved for the objects above andwe often
keep the notation implicit. A signature is implicitlymulti-sorted
and finite. We will also implicitly assume that 𝜏 is finite.

Definition 2.3 (Relational structure). Let Σ be a signature. A struc-
ture in signature Σ, or Σ-structure, A consists of a 𝜏-sorted set 𝐴

called the domain and an ar(𝜙)-ary relation 𝜙A on 𝐴 (i.e., 𝜙A ⊆
𝐴ar(𝜙 )

) called the interpretation of 𝜙 in A for each 𝜙 ∈ 𝜎 . Such a

structure A is said to be finite if 𝐴 is finite.

We shall use the same letter, but different fonts, to refer to a

structure A (bold) and its domain 𝐴 (uppercase). A structure is

implicitly finite.

2.3 Promise CSP
The Promise CSP over a pair of structures (A,B) can be defined as

the problem of deciding whether a conjunctive formula is true in

A or not even true in B.4 This problem only makes sense if each

conjunctive formula true in A is also true in B. Formal definitions

are as follows.

Definition 2.4 (Conjunctive formula). Let Σ be a signature and 𝑋

a 𝜏-sorted set. A conjunctive formula over 𝑋 in the signature Σ (or

conjunctive Σ-formula) is a formal expression Φ of the form

Φ =
∧
𝑖∈𝐼

𝜙𝑖 (x𝑖 ),

where 𝐼 is a finite nonempty set, and 𝜙𝑖 ∈ 𝜎 , x𝑖 ∈ 𝑋 ar(𝜙𝑖 )
for all

𝑖 ∈ 𝐼 . The conjuncts are called constraints.
Given additionally a Σ-structure A, the interpretation of Φ in A,

or the 𝑋 -ary relation defined in A by Φ, is the 𝑋 -ary relation on 𝐴

defined by

ΦA (ℎ) iff
∧
𝑖∈𝐼

𝜙A𝑖 (ℎx𝑖 ).

We allow empty formulas (𝐼 = ∅) and interpret them ΦA = 𝐴𝑋
.

Definition 2.5 (PCSP). A pair of relational structures (A,B) over
the same signature Σ is a promise template if ΦA ≠ ∅ implies ΦB ≠ ∅
for every conjunctive formula Φ in the signature Σ.

Given a promise template (A,B), the Promise Constraint Satisfac-

tion Problem over (A,B), denoted by PCSP(A,B), is the following
problem.

Input a finite 𝜏-sorted set 𝑋 and conjunctive Σ-formula Φ over 𝑋 .

Output yes if ΦA ≠ ∅; no if ΦB = ∅.5

In this context,𝑋 is regarded as a set of variables and the 𝜏-sorted

functions ℎ : 𝑋 → 𝐴 as assignments of values in𝐴 to variables. The

fact that 𝜙A
𝑖
(ℎx𝑖 ) means that the constraint 𝜙𝑖 (x𝑖 ) is satisfied in A

by the assignment ℎ. Thus elements of ΦA
(or ΦB

) can be thought

of as solutions of Φ in A (or B).

4
This is the decision version. The search version is: given a conjunctive formula which

is promised to be satisfiable in A, find a satisfying assignment in B. We only consider

the decision version but results can be easily adjusted to the search one.

5
The promise is that we are in one of the two cases, i.e., not in the case that ΦA = ∅
and ΦB ≠ ∅.

The standard Constraint Satisfaction Problem over A [32] is

PCSP(A,A), where typically only single-sorted signatures are con-

sidered. Here is a concrete example of a problem that falls into this

framework.

Example 2.6 (3LIN2). Given a system of linear equations over

the two-element field Z2 with exactly 3 variables in each equation,

the task is to decide whether it has a solution. This problem can be

phrased as PCSP(A,A), where 𝐴 = {0, 1}, the signature consists of
two [3]-ary symbols𝜙0, 𝜙1, and their interpretation is𝜙

A
𝑖
(𝑎1, 𝑎2, 𝑎3)

iff 𝑎1 + 𝑎2 + 𝑎3 = 𝑖 (mod 2).
We denote this PCSP as well as the template by 3LIN2. We will

also use this convention for other PCSPs. Templates (and PCSPs)

𝑘LIN2 for a positive 𝑘 are defined similarly.

An example of a “truly” promise problem is the following version

of the approximate graph coloring problem.

Example 2.7 (3- versus 5- graph coloring). Given a graph, the task

is to accept if it is 3-colorable and reject if it is not 5-colorable. This is

PCSP(K3,K5), where K𝑘 denotes a 𝑘-clique, that is, a structure with

a 𝑘-element domain and one binary relational symbol interpreted

as the disequality relation on the domain.

The last example is a CSP, but requires two sorts instead of just

one. It is a version of the Label Cover problem.

Example 2.8 (LC𝐷,𝐸 – Label Cover). Fix finite disjoint sets 𝐷, 𝐸.
Given a bipartite (multi-)graphwith vertex set𝑈∪𝑉 and a constraint

𝜋𝑢𝑣 : 𝐷 → 𝐸 for each edge {𝑢, 𝑣} in the graph, the task is to

decide whether all the constraints can be satisfied, i.e., whether

there exist functions ℎ𝐷 : 𝑈 → 𝐷 and ℎ𝐸 : 𝑉 → 𝐸 such that

𝜋𝑢𝑣 (ℎ𝐷 (𝑢)) = ℎ𝐸 (𝑣) for every edge {𝑢, 𝑣}.
This problem is PCSP(A,A), where the sort symbols are 𝐷 and

𝐸, 𝐴 = 𝐷 ∪ 𝐸 (with sort(𝑑) = 𝐷 for 𝑑 ∈ 𝐷 and sort(𝑒) = 𝐸 for

𝑒 ∈ 𝐸), the signature consists of all functions 𝜋 : 𝐷 → 𝐸 of arity [2]
with sort(1) = 𝐷 , sort(2) = 𝐸, interpreted as 𝜋A (𝑑, 𝑒) iff 𝜋 (𝑑) = 𝑒 .

We typically omit the superscript in 𝜋A, which should not cause a

confusion because of the different number of arguments.

The multi-sorted setting is primarily introduced to include prob-

lems such as the Label Cover. Note however that single-sorted

PCSPs have natural formulations as multi-sorted ones. For instance,

3LIN2 from Example 2.6 can be introduced using a 3-sorted signa-

ture, with the 3-sorted domain 𝜙A
0
∪ 𝜙A

1
∪ {0, 1} (where 𝜙A

𝑖
is as in

the example) and six binary symbols interpreted as the graphs of

the projection mappings 𝜙A
𝑖
→ {0, 1}. In fact, this transformation

from single-sorted to multi-sorted is essentially the reduction from

a PCSP to MC discussed at the end of this section.

2.4 Polymorphisms
An 𝑁 -ary polymorphism of (A,B) is an 𝑁 -ary function from𝐴 to 𝐵

that preserves every relation, that is, if we apply it component-wise

to an 𝑁 -tuple of tuples from 𝜙A, then we get a tuple from 𝜙B for

every 𝜙 in the common signature of A and B. We phrase this prop-

erty in terms of matrices. But first, let us discuss the terminology in

the multi-sorted setting. Let 𝐴, 𝐵, 𝑍 be 𝜏-sorted sets and 𝑁 be a set.

An 𝑁 -ary function 𝑓 from 𝐴 to 𝐵 is a 𝜏-sorted function 𝐴𝑁 → 𝐵,

i.e., an element of𝐵𝐴
𝑁
. It can be regarded as a collection of functions
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𝑓𝑡 : 𝐴𝑁
𝑡 → 𝐵𝑡 , 𝑡 ∈ 𝜏 . When |𝑁 | = 1 an 𝑁 -ary function is called

unary.

For 𝑛 ∈ 𝑁 , the 𝑁 -ary projection to the 𝑛-th coordinate is denoted
by proj

𝑁
𝑛 , i.e., proj

𝑁
𝑛 : 𝐴𝑁 → 𝐴 is defined by proj

𝑁
𝑛 (a) = a(𝑛). The

set𝐴 will be clear from the context. For 𝑧 ∈ 𝑍 , the 𝑍 -ary projection

to the 𝑧-th coordinate proj
𝑍
𝑧 : 𝐴𝑍 → 𝐴 is defined by the same

formula. Note that its image is contained in 𝐴
sort(𝑧 ) .

An element𝑀 ∈ 𝐴𝑍×𝑁
can be regarded as a matrix whose rows

are indexed by elements 𝑧 ∈ 𝑍 , columns are indexed by elements

𝑛 ∈ 𝑁 , and the (𝑧, 𝑛) entry is 𝑀 (𝑧, 𝑛) ∈ 𝐴
sort(𝑧 ) . The 𝑁 -tuple of

columns is denoted by cols(𝑀) ∈ (𝐴𝑍 )𝑁 and, for 𝑛 ∈ 𝑁 , the 𝑛-

th column is denoted by col𝑛 (𝑀) ∈ 𝐴𝑍
. The 𝑍 -tuple of rows is

denoted by rows(𝑀) ∈ (𝐴𝑁 )𝑍 and the 𝑧-th row by row𝑧 (𝑀) ∈
(𝐴

sort(𝑧 ) )𝑁 ⊆ 𝐴𝑁
.

Definition 2.9 (Polymorphism). Let (A,B) be a pair of Σ-structures
and 𝑁 a finite set. An 𝑁 -ary relation-matrix pair for A is a pair

(𝜙,𝑀), where 𝜙 ∈ 𝜎 and 𝑀 ∈ 𝐴ar(𝜙 )×𝑁
is a matrix whose each

column is in 𝜙A. We denote by Mat(A, 𝑁 ) the set of all 𝑁 -ary

relation-matrix pairs for A.

Mat(A, 𝑁 ) = {(𝜙,𝑀) | 𝜙 ∈ 𝜎,𝑀 ∈ 𝐴ar(𝜙 )×𝑁 ,

∀𝑛 ∈ 𝑁 col𝑛 (𝑀) ∈ 𝜙A}.

An 𝑁 -ary function 𝑓 from 𝐴 to 𝐵 is a polymorphism of (A,B) if

∀(𝜙,𝑀) ∈ Mat(A, 𝑁 ) 𝜙B (𝑓 ◦ rows(𝑀)).

We denote by Pol
(𝑁 ) (A,B) the set of 𝑁 -ary polymorphisms of

(A,B) and the collection of these sets
6
by

Pol(A,B) = (Pol(𝑁 ) (A,B))𝑁 ∈FinSet .

An 𝑁 -ary polymorphism of (A,B) gives us a way to combine 𝑁

tuples from a relation 𝜙A to get a single tuple from 𝜙B. This extends
to any conjunctive formula: if Φ is a conjunctive formula over 𝑋

and𝑀 ∈ 𝐴𝑋×𝑁
has all the columns in ΦA

, then ΦB (𝑓 rows(𝑀)). In
other words, polymorphisms give us a way to combine A-solutions
to get a B-solution.

The collection of polymorphisms of a pair (A,B) is closed under

taking minors in the sense of the following definition. We call such

collections function minions.
7

Definition 2.10 (Function minion). Let 𝐴, 𝐵 be 𝜏-sorted sets and

𝑁 , 𝑁 ′
finite sets. For 𝑓 : 𝐴𝑁 → 𝐵 and 𝜋 : 𝑁 → 𝑁 ′

, the minor of 𝑓
given by 𝜋 , denoted by 𝑓 (𝜋 ) , is the𝑁 ′

-ary function 𝑓 (𝜋 ) : 𝐴𝑁 ′ → 𝐵

defined by

𝑓 (𝜋 ) (a) = 𝑓 (a ◦ 𝜋) for every a ∈ 𝐴𝑁 ′
.

A collection M = (M (𝑁 ) )𝑁 ∈FinSet, where M (𝑁 )
is a set of 𝑁 -

ary functions from 𝐴 to 𝐵, is a function minion on (𝐴, 𝐵) if 𝑓 (𝜋 ) ∈
M (𝑁 ′ )

for every 𝑁, 𝑁 ′ ∈ FinSet, 𝑓 ∈ M (𝑁 )
, and 𝜋 : 𝑁 → 𝑁 ′

.

6
It may seem that Pol(A,B) is a monstrous object: for each finite set 𝑁 we have a

set of 𝑁 -ary functions from𝐴 to 𝐵. However, note that 𝑁 -ary polymorphisms fully

determine 𝑁 ′
-ary polymorphisms whenever |𝑁 | = |𝑁 ′ | .

7
Conversely, “almost” every function minion on finite sets is a minion of polymor-

phisms. The caveat is that we would need to allow infinite signatures and ignore

functions of arity ∅.

Example 2.11. If 𝑓 : 𝐴[3] → 𝐴 and 𝜋 : [3] → [2] is defined
by 𝜋 (1) = 𝜋 (3) = 2, 𝜋 (2) = 1, then 𝑓 (𝜋 ) (𝑎1, 𝑎2) = 𝑓 (𝑎2, 𝑎1, 𝑎2).
Informally, a minor of 𝑓 is a function that can be obtained from

𝑓 by merging and permuting variables (and introducing dummy

ones).

Example 2.12. The collection given by P (𝑁 ) = {proj𝑁𝑛 | 𝑛 ∈ 𝑁 }
is an easy and important example of a function minion on (𝐴,𝐴).
Note that (proj𝑁𝑛 ) (𝜋 ) = proj

𝑁 ′

𝜋 (𝑛) for every 𝜋 : 𝑁 → 𝑁 ′
.

A fundamental role (though not always explicit) in the CSP

theory, as well as for various variants of CSPs, is played by a specific

conjunctive formula Φ on the set of variables 𝐴𝑁
for some finite

set 𝑁 . Note that assignments from the set of variables to 𝐴 (to

𝐵) are exactly the 𝑁 -ary functions from 𝐴 to 𝐴 (to 𝐵). For a fixed

pair (A,B), the formula Φ is created by placing all the possible

constraints with the restriction that ΦA (proj𝑁𝑛 ) for every 𝑛 ∈ 𝑁 .

Then ΦB
is exactly the set of 𝑁 -ary polymorphisms of (A,B).

Proposition 2.13 (Canonical formula). For every pair (A,B)
of finite Σ-structures and 𝑁 a finite set, the Σ-formula8

Φ =
∧

(𝜙,𝑀 ) ∈Mat(A,𝑁 )
𝜙 (rows(𝑀))

over the set of variables 𝐴𝑁 satisfies

• ΦA (proj𝑁𝑛 ) for every 𝑛 ∈ 𝑁 , and
• ΦB = Pol

(𝑁 ) (A,B).

Note that, as claimed above, Φ is created by placing all possible

constraints so that the first item is satisfied. Indeed, any constraint

𝜙 (x) over 𝐴𝑁
is equal to 𝜙 (rows(𝑀)) for some 𝜙 ∈ 𝜎 and 𝑀 ∈

𝐴ar(𝜙 )×𝑁
. The fact that 𝜙A (proj𝑁𝑛 ) is exactly saying that col𝑛 (𝑀)

is in 𝜙A, so satisfying 𝜙A (proj𝑁𝑛 ) for each 𝑛 ∈ 𝑁 , is equivalent to

𝑀 ∈ Mat(A, 𝑁 ).
Applying the canonical formula for a singleton set 𝑁 gives us a

characterization of templates. Item (iii) in the proposition below is

in fact often used as a definition of a template.

Proposition 2.14 (Characterization of templates). Let (A,B)
be a pair of finite Σ-structures. The following are equivalent.

(i) (A,B) is a promise template.
(ii) For each conjunctive Σ-formula Φ over the set of variables 𝐴,

if ΦA (id𝐴), then ΦB ≠ ∅.
(iii) There exists a unary polymorphism of (A,B).

Starting from the canonical formula, the theory can now go

in two directions. The original approach for CSPs from [10, 16,

25, 38] can be formulated, with a slight imprecision, as follows.

If Pol(A,A) ⊆ Pol(A′,A′), then each relation in A′
can be de-

fined by existentially quantifying the canonical formula (for (A,A))
for a suitable 𝑁 , which then implies PCSP(A′,A′) ≤ PCSP(A,A),
where ≤ denotes the polynomial-time reducibility. This direction

can continue by replacing definability with more expressive con-

structions and thus allowing us to replace the inclusion Pol(A,A) ⊆
Pol(A′,A′) by weaker requirements, which in turn gives us more

reductions. One step in this process replaced the inclusion by the

8
In the terminology used in e.g. [16], this is the canonical conjunctive query of the

𝑁 -th power of A. In [38], this construction was called the indicator problem.
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existence of so-called minion homomorphisms [10] and this was

generalized to PCSPs in [4] based on [23, 47].

The second direction that the theory can take, also based on the

canonical formula, avoids the definability considerations. Instead,

it proves the reduction theorem based on minion homomorphisms

in a more direct way. This approach, discovered in [4], is the one

we follow in this work.

2.5 Minion homomorphisms and reductions
A minion homomorphism between function minions is a mapping

of 𝑁 -ary functions in the first minion to 𝑁 -ary functions in the

second minion that preserves taking minors. This concept does not

depend on concrete functions in the minion, it only depends on the

mappings 𝑓 ↦→ 𝑓 (𝜋 ) . We therefore first introduce an abstraction of

function minions that carries exactly this information.

Definition 2.15 (Minion). An (abstract) minion M consists of

a collection of sets (M (𝑁 ) )𝑁 ∈FinSet, together with a minor map
M (𝜋 )

: M (𝑁 ) → M (𝑁 ′ )
for every function 𝜋 : 𝑁 → 𝑁 ′

, which

satisfies that M (id𝑁 ) = idM (𝑁 ) for all finite sets 𝑁 and M (𝜋 ) ◦
M (𝜋 ′ ) = M (𝜋◦𝜋 ′ )

whenever such a composition is well-defined.

When the minion is clear, we write 𝑓 (𝜋 ) for M (𝜋 ) (𝑓 ).
A minionM is nontrivial ifM (𝑁 )

is nonempty for every (equiv-

alently some) nonempty 𝑁 .

The most natural choice of morphisms between minions is min-

ion homomorphisms defined as follows.
9

Definition 2.16 (Minion homomorphism). Let M and M ′
be min-

ions. A minion homomorphism from M to M ′
is a collection of

functions (𝜉 (𝑁 )
: M (𝑁 ) → M ′(𝑁 ) )𝑁 ∈FinSet that preserves tak-

ing minors, that is, 𝜉 (𝑁
′ ) (M (𝜋 ) (𝑓 )) = M ′ (𝜋 ) (𝜉 (𝑁 ) (𝑓 )) for every

𝑁, 𝑁 ′ ∈ FinSet, 𝑓 ∈ M (𝑁 )
, and 𝜋 : 𝑁 → 𝑁 ′

.

The reduction theorem discussed above is the following.

Theorem 2.17 (Reductions via minion homomorphism). Let
(A,B), (A′,B′) be promise templates. If there is a minion homomor-
phism from Pol(A,B) to Pol(A′,B′), then we have PCSP(A′,B′) ≤
PCSP(A,B).10

This reduction theorem explains hardness for CSPs in the follow-

ing sense: if PCSP(A,A) cannot be solved in polynomial time by the

algorithms in [26, 54], then Pol(A,A) has a minion homomorphism

to the projection minion from Example 2.12 (with |𝐴| ≥ 2), which

has a minion homomorphism to every nontrivial minion.

The modern proof of Theorem 2.17 is via showing that each

PCSP(A,B) is equivalent to a certain computational problem pa-

rameterized by the (abstract) minion of polymorphisms, called the

minor condition problem, and that a minion homomorphism (triv-

ially) gives a reduction between such problems.

Definition 2.18 (Minor Condition Problem). Given a nontrivial

minion M and an integer 𝑘 , the Minor Condition Problem for M
and 𝑘 , denoted byMC(M , 𝑘) is the following problem:

9
In the language of category theory, a minion is simply a functor from the category of

finite sets to the category of sets (a minion corresponds to the functor 𝑋 ↦→ M (𝑋 )
,

𝜋 ↦→ M (𝜋 )
) and minion homomorphisms are natural transformations. Note that the

projection minion from Example 2.12 is naturally equivalent to the inclusion functor.

10
In fact, Theorem 1 even holds with a log-space reduction, but that will not concern

us.

Input 1. disjoint sets 𝑈 and 𝑉 (the sets of variables),
2. a set 𝐷𝑥 with |𝐷𝑥 | ≤ 𝑘 for every 𝑥 ∈ 𝑈 ∪ 𝑉 (the

domain of 𝑥 ),

3. a set of formal expressions of the form 𝜋 (𝑢) = 𝑣 , where

𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑉 , and 𝜋 : 𝐷𝑢 → 𝐷𝑣 (theminor conditions).
Output yes if there exists a function ℎ from 𝑈 ∪ 𝑉 with ℎ(𝑥) ∈

𝐷𝑥 (for each 𝑥 ∈ 𝑈 ∪ 𝑉 ) such that, for each minor

condition 𝜋 (𝑢) = 𝑣 , we have 𝜋 (ℎ(𝑢)) = ℎ(𝑣).
no if there does not exist a function ℎ from 𝑈 ∪𝑉 with

ℎ(𝑥) ∈ M (𝐷𝑥 )
such that, for each minor condition

𝜋 (𝑢) = 𝑣 , we have M (𝜋 ) (ℎ(𝑢)) = ℎ(𝑣).

The name for the minor condition problem comes from the

requirement M (𝜋 ) (ℎ(𝑢)) = ℎ(𝑣): the element of M assigned to 𝑣

must be the minor of the element assigned to 𝑢 given by 𝜋 . Note

also that 𝜋 (ℎ(𝑢)) = ℎ(𝑣) is equivalent to P (𝜋 ) (ℎ(𝑢)) = ℎ(𝑣) for
the projection minion P from Example 2.12.

Since M is nontrivial, an instance cannot simultaneously be a

yes and no instance. Indeed, if ℎ witnesses that an instance is a yes
instance, then 𝑥 ↦→ 𝑓 (𝛾ℎ (𝑥 ) )

, where 𝑓 ∈ M ( [1] )
and 𝛾ℎ (𝑥 ) is the

mapping [1] → 𝐷𝑥 with 1 ↦→ ℎ(𝑥), witnesses that the instance is
not a no instance.

Notice also that an instance of MC is very similar to an instance

of LC from Example 2.8. In fact, MC(M , 𝑘) can be phrased as a

PCSP over a certain multi-sorted template.

The reduction between two PCSPs in Theorem 2.17 based on a

minion homomorphism is a composition of three reductions: from

PCSP to MC, from MC (over one minion) to MC (over another

one), and from MC to PCSP. Overall, we have the following re-

ductions (depicted as arrows) for templates (A,B), (A′,B′), their
polymorphism minions M , M ′

, and a sufficiently large 𝑘 :

PCSP(A′,B′) PCSP(A,B)

MC(M ′, 𝑘) MC(M , 𝑘)

3 VALUED PROMISE CSP
The generalization of PCSP to the valued setting is obtained by

replacing relations by valued relations, that is, mappings 𝐴𝑍 →
Q ∪ {−∞}, and suitably adjusting the concepts. The crisp PCSPs

can be modelled as Valued PCSPs with {−∞, 0}-valued relations.

This section covers the basics up to a valued and improved ver-

sion of canonical formulas. A generalization of minion homomor-

phisms and the main reduction theorem are given in Section 4 and

examples of valued homomorphisms are shown in Section 5. The

missing proofs are in the full version [6].

3.1 Preliminaries
We denote by Q+ (Q+

0
) the set of positive (nonnegative) rational

numbers and by Q the set of rational numbers together with an

additional symbol −∞. We naturally extend the operations and

order, leaving 0 · −∞ undefined.

We will work with probability distributions on finite sets with

rational probabilities, so we can formally regard a probability dis-

tribution on 𝑁 as a function 𝜇 : 𝑁 → Q+
0
such that

∑
𝑛∈𝑁 𝜇 (𝑛) = 1.

We denote by Δ𝑁 the set of probability distributions on 𝑁 . The
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support of a probability distribution 𝜇 ∈ Δ𝑁 is the set Supp(𝜇) =
{𝑛 ∈ 𝑁 | 𝜇 (𝑛) > 0}.

If 𝑓 : 𝑁 → 𝑁 ′
and 𝜇 ∈ Δ𝑁 , we define 𝑓 (𝜇) ∈ Δ𝑁 ′

in the nat-

ural way (𝑓 (𝜇)) (𝑛′) = ∑
𝑛;𝑓 (𝑛)=𝑛′ 𝜇 (𝑛), that is, 𝑛′ can be sampled

according to 𝑓 (𝜇) by sampling 𝑛 according to 𝜇 and computing

𝑛′ = 𝑓 (𝑛). We also use the notation 𝐹 (𝜇) when 𝜇 ∈ Δ𝑁 and 𝐹 is

a probability distribution on a set of mappings 𝑁 → 𝑁 ′
, i.e., to

sample 𝐹 (𝜇) we independently sample 𝑛 ∼ 𝜇, 𝑓 ∼ 𝐹 and compute

𝑓 (𝑛).
Given 𝜇 ∈ Δ𝑁 and a function 𝑓 : 𝑁 → Q, we denote by

E𝑛∼𝜇 𝑓 (𝑛) the expected value of 𝑓 (𝑛) when 𝑛 is sampled according

to 𝜇, i.e., E𝑛∼𝜇 𝑓 (𝑛) =
∑
𝑛∈𝑁 𝜇 (𝑛) 𝑓 (𝑛).

A basic tool for some of the proofs is Farkas’ lemma [50]. The

following formulation will be convenient for us. In the statement,

juxtaposition denotes the standard matrix multiplication,
𝑇
is used

for the transposition, and x ≥ 0 means that all the components are

nonnegative.

Theorem 3.1 (Farkas’ lemma). Let 𝐼 , 𝐽 be finite sets, 𝐹 ∈ Q𝐼× 𝐽 ,
and q ∈ Q𝐼 . The following are equivalent.

(i) ∃y ∈ (Q+
0
) 𝐽 𝐹y ≤ q.

(ii) ∀x ∈ (Q+
0
)𝐼 (𝐹𝑇 x ≥ 0 =⇒ q𝑇 x ≥ 0).

3.2 Valued Structures and the Valued PCSP
Definition 3.2 (Valued relational structure). Let 𝜏 be a set (of sorts),

and let 𝑍 and 𝐴 be 𝜏-sorted sets. A 𝑍 -ary valued relation on 𝐴, or a
𝑍 -ary payoff function on𝐴, is a function𝜙 : 𝐴𝑍 → Q. The feasibility
set of 𝜙 , denoted by feas(𝜙), is the pre-image of Q under 𝜙 .

Let Σ be a signature. A valued Σ-structure A consists of a 𝜏-sorted

set 𝐴 called the domain and an ar(𝜙)-ary valued relation 𝜙A on 𝐴,

the interpretation of 𝜙 in A, for every 𝜙 ∈ 𝜎 . Such a structure A
is said to be finite if 𝐴 is finite. For a rational number 𝑐 we write

A ≤ 𝑐 if 𝜙A (a) ≤ 𝑐 for every 𝜙 ∈ 𝜎 and a ∈ 𝐴ar(𝜙 )
.

For a valued Σ-structure A, the feasibility structure, denoted by

feas(A), is the (non-valued) Σ-structure obtained by replacing each

𝜙A by feas(𝜙A).

Definition 3.3 (Payoff formula). Let Σ be a signature and𝑋 a finite

𝜏-sorted set. A payoff formula over 𝑋 in the signature Σ, or a payoff
Σ-formula, is a formal expression of the form

Φ =
∑︁
𝑖∈𝐼

𝑤𝑖𝜙𝑖 (x𝑖 ),

where 𝐼 is a finite nonempty set, and 𝑤𝑖 ∈ Q+
0
(weights), 𝜙𝑖 ∈ 𝜎 ,

x𝑖 ∈ 𝑋 ar(𝜙𝑖 )
for all 𝑖 ∈ 𝐼 . The weight of Φ is𝑤 (Φ) = ∑

𝑖∈𝐼 𝑤𝑖 .

Given additionally a valued Σ-structure A, the interpretation of
Φ in A, or the 𝑋 -ary valued relation defined in A by Φ, is the 𝑋 -ary

valued relation on 𝐴 defined by

ΦA (ℎ) =
∑︁
𝑖∈𝐼

𝑤𝑖𝜙
A
𝑖 (ℎx𝑖 ),

where summands 0 · −∞ are evaluated as −∞ (but we keep 0 · −∞
undefined in different contexts).

We allow empty formulas Φ, and define𝑤 (Φ) = 0 and ΦA (ℎ) = 0.

Note that the convention that 0·−∞ = −∞ ensures that feas(ΦA)
is equal to the interpretation of

∧
𝑖∈𝐼 𝜙𝑖 (x𝑖 ) in feas(A) and, for ℎ ∈

feas(ΦA), the sum defining ΦA (ℎ) does not contain any infinities.

Definition 3.4 (Valued PCSP). A valued promise template is a

quadruple (A,B, 𝑐, 𝑠) where
• A, B are valued relational structures in the same signature

Σ, and
• 𝑐, 𝑠 ∈ Q are the completeness and soundness parameters re-

spectively

such that ∃ℎ ΦA (ℎ) ≥ 𝑐 𝑤 (Φ) implies ∃ℎ ΦB (ℎ) ≥ 𝑠 𝑤 (Φ) for every
payoff Σ-formula Φ.
Given a valued promise template (A,B, 𝑐, 𝑠), the Promise Constraint
Satisfaction Problem over (A,B, 𝑐, 𝑠), denoted by PCSP(A,B, 𝑐, 𝑠), is
the following problem.

Input a finite 𝜏-sorted set 𝑋 and a payoff Σ-formula Φ over 𝑋 .

Output yes if ∃ℎ ΦA (ℎ) ≥ 𝑐 𝑤 (Φ); no if ∀ℎ ΦB (ℎ) < 𝑠 𝑤 (Φ).11

Let us start the discussion about this generalization of PCSPs by

giving examples of problems included in this framework.

First observe that Valued PCSPs indeed generalize crisp PCSPs:

for a crisp template (A′,B′) we can define a valued promise tem-

plate (A,B, 0, 0) by setting 𝜙A (a) = 0 if a ∈ 𝜙A
′
and 𝜙A (a) = −∞

otherwise for all 𝜙 ∈ 𝜎 , a ∈ 𝐴ar(𝜙 )
, and similarly for B′

. Clearly,

PCSP(A′,B′) is equivalent to PCSP(A,B, 0, 0).
Another natural valued promise template associated to a crisp

template (A′,B′) is (A,B, 𝑐, 𝑠), where𝜙A (a) = 1 if a ∈ 𝜙A
′
,𝜙A (a) =

0 otherwise, and 𝑐 ≥ 𝑠 are the completeness and soundness pa-

rameters. PCSPs over such templates include e.g. approximation

problems for MaxCSPs, such as the following concrete problems.

Example 3.5 (3LIN2(𝑐, 𝑠)). Given a weighted system of linear

equations overZ2 with exactly 3 variables in each equation, accept if
there exists an assignment that satisfies a 𝑐-fraction of the equations

(taking weights into account), and reject if there is no assignment

that satisfies an 𝑠-fraction of the equations.

This problem is PCSP(A,A, 𝑐, 𝑠) where 𝐴 = {0, 1} and the sig-

nature consists (as in Example 2.6) of two [3]-ary symbols 𝜙0, 𝜙1
interpreted as 𝜙A

𝑖
(𝑎1, 𝑎2, 𝑎3) = 1 if 𝑎1 + 𝑎2 + 𝑎3 = 𝑖 (mod 2) and

𝜙A
𝑖
(𝑎1, 𝑎2, 𝑎3) = 0 otherwise.

We denote this PCSP as well as the template by 3LIN2(𝑐, 𝑠). Note
that 3LIN2(1, 1) is another formulation of 3LIN2.

The following maximization version of Example 2.7, first intro-

duced in [46], nicely combines the promise and valued frameworks.

Example 3.6 (Maximum 3- versus 5-coloring of graphs). Given an

edge-weighted graph𝐺 , the task is to accept if𝐺 admits a 3-coloring

with a 𝑐-fraction of non-monochromatic edges, and reject if𝐺 does

not admit a 5-coloring with an 𝑠-fraction of non-monochromatic

edges. But this is just PCSP(K3,K5, 𝑐, 𝑠), where K𝑘 is the 𝑘-clique,

interpreted here as having payoff 1 on the edges and 0 on non-edges.

Another example that fits in our framework is a variant of Ex-

ample 3.6 concerned with a 3- vs 5- coloring of a large induced

subgraph of a given graph [36].

A gap version of Example 2.8, the Gap Label Cover problem, is a

starting point for many NP-hardness results in approximation.

Example 3.7 (GLC𝐷,𝐸 (𝑐, 𝑠): Gap Label Cover). Fix disjoint finite
sets 𝐷, 𝐸 and rationals 1 ≥ 𝑐 ≥ 𝑠 > 0. Given a weighted bipartite

11
The promise is that we are in one of the two cases, i.e., not in the case that

∀ℎ ΦA (ℎ) < 𝑐 𝑤 (Φ) and ∃ℎ ΦB (ℎ) ≥ 𝑠𝑤 (Φ) .
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graph with vertex set𝑈 ∪𝑉 and a constraint 𝜋𝑢𝑣 : 𝐷 → 𝐸 for each

edge {𝑢, 𝑣}, accept if a 𝑐-fraction (taking weights into account) of

the constraints can be satisfied, and reject if not even an 𝑠-fraction

of the constraints can be satisfied.

This problem is PCSP(A,A, 𝑐, 𝑠), where the sort symbols are 𝐷

and 𝐸, 𝐴 = 𝐷 ∪ 𝐸, the signature consists of all functions 𝜋 : 𝐷 → 𝐸

of arity [2] (sort(1) = 𝐷 , sort(2) = 𝐸), interpreted as 𝜋A (𝑑, 𝑒) = 1

if 𝜋 (𝑑) = 𝑒 and 𝜋A (𝑑, 𝑒) = 0 otherwise.

A consequence of the PCP theorem [1, 31] and the Parallel Rep-

etition theorem [49] is that for every 𝜖 > 0 there exist 𝐷, 𝐸 such

that GLC𝐷,𝐸 (1, 𝜖) is NP-hard.

Problems withA ≤ 𝑐 are said to have perfect completeness. By giv-
ing up perfect completeness in the Gap Label Cover and restricting

the functions 𝜋 : 𝐷 → 𝐸 to be bijections, we obtain the well-known

Unique Games problem, a starting point of many conditional NP-

hardness results.

Example 3.8 (Unique Games). We fix disjoint sets 𝐷 and 𝐸 such

that |𝐷 | = |𝐸 | and 𝜖 > 0, and define A as in Example 3.7 but only

using bijective 𝜋 : 𝐷 → 𝐸.

The Unique Games Conjecture of Khot [40] states that for every

𝜖 > 0 there exist 𝐷 and 𝐸 such that PCSP(A,A, 1 − 𝜖, 𝜖) is NP-hard.

Nice examples where infinite and nonzero finite payoffs both

appear are the vertex cover and independent set problems in graphs.

While they are in some sense complementary,
12

it is known that

these two problems differ significantly with respect to approxima-

bility: vertex cover admits a 2-approximation whereas there is no

constant factor approximation for independent set. The following

examples show the optimization versions of these problems.

Example 3.9 (Independent Set). An independent set in a graph𝐺

is a subset 𝑆 of the vertices of𝐺 such that every edge of the graph is

incident to at most one vertex in 𝑆 . In the Independent Set problem

with parameter 1 ≥ 𝑐 > 0, the task is, given a vertex-weighted

graph 𝐺 , to accept if 𝐺 has an independent set of fractional size at

least 𝑐 , and reject otherwise.

Independent Set fits in our framework as PCSP(A,A, 𝑐, 𝑐) where
1 ≥ 𝑐 > 0 (the lower bound on the weight of the independent set),

𝐴 = {0, 1}, and the signature consists of a unary relation symbol

𝜙 interpreted as 𝜙A (𝑎) = 𝑎 (enforcing that the fractional size of

the independent set is at least 𝑐) and a binary relation symbol 𝜓

interpreted as 𝜓A (1, 1) = −∞ and 𝜓A (𝑎1, 𝑎2) = 0 for all other

values of 𝑎1, 𝑎2 (enforcing that if the subset of the vertices that are

assigned 1 yields a finite payoff, then it is an independent set).

Example 3.10 (Vertex Cover). A vertex cover of a graph 𝐺 is a

subset 𝑆 of the vertices of 𝐺 such that every edge of the graph is

incident to at least one vertex in 𝑆 . In the Vertex Cover problem

with parameter 𝑐 , the task is to accept if a vertex-weighted graph𝐺

has a vertex cover of fractional size at most 𝑐 , and reject otherwise.

Vertex cover is a minimization problem. However, it can be

phrased in our framework as PCSP(A,A,−𝑐,−𝑐), where the domain

and signature are as in Example 3.9 but the symbols are interpreted

as 𝜙A (𝑎) = −𝑎,𝜓A (0, 0) = −∞, and𝜓A (𝑎1, 𝑎2) = 0 otherwise.

12
A set of vertices is independent iff its complement is a vertex cover.

We now discuss several possible variations and modifications of

the definition of valued PCSPs, ordered by the significance of the

difference they would cause.

First, we have decided for the maximization version of the defi-

nition. The corresponding minimization problem can be obtained

by multiplying all payoff functions as well as 𝑐 and 𝑠 by −1 (cf.

Example 3.10), so results for our version can be easily transferred

to the minimization version and vice versa.

Second, note that by shifting (and/or scaling) the payoff functions

in A and B and modifying 𝑐 and 𝑠 in the same way, we get an

equivalent problem. It would therefore be possible to fix 𝑐, 𝑠 , e.g.,

to 𝑐 = 𝑠 = 0 and define a template just as a pair (A,B). Our choice
here was inspired by a more natural formulation of problems such

as 3LIN2(𝑐, 𝑠).
Third, a natural version of the definition is to require Φ to be

normalized, that is,𝑤 (Φ) = 1. An instance can then be regarded as

a probability distribution on constraints; ΦA (ℎ) can be interpreted

as the expected value of 𝜙A (ℎx𝑖 ) when constraint 𝜙 (x𝑖 ) is selected
according to this distribution. Note that an equivalent normalized

instance can be obtained by dividing all the weights by𝑤 (Φ), unless
𝑤 (Φ) = 0, i.e., all the weights are zero. Therefore this alternative

formulation differs from our formulation only very slightly.

Fourth, a more substantial change would be to require that all

the weights be equal, say to 1. We regard the presented version as

slightly more natural. Note however that it is often the case that

positive (algorithmic) results work even for the weighted version

and negative (hardness) results already for the non-weighted one,

by emulating weights via repeated constraints.

Fifth, the most substantial change would be to not fix 𝑐, 𝑠 in

advance and rather make them part of the instance. An impor-

tant intermediate choice is to fix 𝑠/𝑐: a template would be a triple

(A,B, 𝜅), an instance would include 𝑐 (not 𝑠), and yes and no would
be defined in the same way as in the definition with 𝑠 = 𝜅𝑐 . Such a

framework includes constant factor approximation problems for

MaxCSP; for 𝜅 = 1 and A = B this framework essentially coincides

with general-valued CSPs [30, 43]. In fact, the algebraic framework

discovered for 𝜅 = 1 and general A,B by Kazda [39] was among the

starting points for this work. We give basics of this framework in

the full version [6].

3.3 Polymorphisms
A natural generalization of an 𝑁 -ary operation from 𝐴 to 𝐵 to the

valued world consists of a probability distribution on 𝑁 and a prob-

ability distribution on a set F of (normal) 𝑁 -ary operations from 𝐴

to 𝐵. In our situation F will be the set of all 𝑁 -ary polymorphisms

of the pair of feasibility structures corresponding to a pair (A,B)
of valued structures. We therefore denote

PolFeas(A,B) = Pol(feas(A), feas(B))

and introduce the following concept.

Definition 3.11 (Weighting). Let M be a minion and 𝑁 a finite

set. An 𝑁 -ary weighting of M is a pair

Ω = (Ωin,Ωout) where Ωin ∈ Δ𝑁, Ωout ∈ ΔM (𝑁 ) .

Relation-matrix pairs for valued structures are introduced in

an analogous fashion as in the crisp case. Given such a pair and
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a weighting Ω of PolFeas(A,B) we have two naturally associated

rationals: the expected payoff in A of the 𝑛-th column, when 𝑛 is

selected according to Ωin
; and the expected payoff in B of the tuple

obtained by applying 𝑓 to the rows of the matrix, when 𝑓 is selected

according to Ωout
.

Definition 3.12 (Relation-matrix pairs, input and output payoffs).
Let (A,B) be a pair of valued Σ-structures, M = PolFeas(A,B), and
𝑁 a finite set. We define

Mat(A, 𝑁 ) = {(𝜙,𝑀) | 𝜙 ∈ 𝜎,𝑀 ∈ 𝐴ar(𝜙 )×𝑁 ,

∀𝑛 ∈ 𝑁 col𝑛 (𝑀) ∈ feas(𝜙A)}.
For an 𝑁 -ary weighting Ω ofM and (𝜙,𝑀) ∈ Mat(A, 𝑁 ) we define

Ωin [𝜙,𝑀] = E
𝑛∼Ωin

𝜙A (col𝑛 (𝑀)) and

Ωout [𝜙,𝑀] = E
𝑓 ∼Ωout

𝜙B (𝑓 rows(𝑀)) .

For an 𝑁 -ary weighting Ω of M and functions 𝛼 : 𝑁 → Q, 𝛽 :

M (𝑁 ) → Q we define

Ωin [𝛼] = E
𝑛∼Ωin

𝛼 (𝑛) and Ωout [𝛽] = E
𝑓 ∼Ωout

𝛽 (𝑓 ).

For a weighting Ω, each relation-matrix pair thus gives us a

point (Ωin [𝜙,𝑀],Ωout [𝜙,𝑀]) in the plane Q2. We say that Ω is a

𝜅-polymorphism if all these points lie on or above the line with

slope 𝜅 going through (𝑐, 𝑠).
Definition 3.13 (Polymorphisms). Let (A,B) be a pair of valued

Σ-structures, M = PolFeas(A,B), and 𝑐, 𝑠 ∈ Q.
• Let𝜅 ∈ Q+

0
. An𝑁 -aryweightingΩ ofM is a𝜅-polymorphism

of (A,B, 𝑐, 𝑠) if
∀(𝜙,𝑀) ∈ Mat(A, 𝑁 ) Ωout [𝜙,𝑀] − 𝑠 ≥ 𝜅 (Ωin [𝜙,𝑀] − 𝑐) .
• An 𝑁 -ary weighting Ω of M is a polymorphism of (A,B, 𝑐, 𝑠)
if it is a 𝜅-polymorphism for some 𝜅 ∈ Q+

0
.

• A finite family (Ω 𝑗 ) 𝑗∈ 𝐽 of weightings of M of arities N =

(𝑁 𝑗 ) 𝑗∈ 𝐽 is an N-ary plurimorphism of (A,B, 𝑐, 𝑠) if there
exists 𝜅 ∈ Q+

0
such that every Ω 𝑗 is a 𝜅-polymorphism.

We will denote by 𝜅-Pol(𝑁 ) (A,B, 𝑐, 𝑠), Pol(𝑁 ) (A,B, 𝑐, 𝑠), and
Plu

(N) (A,B, 𝑐, 𝑠) the sets of all 𝑁 -ary 𝜅-polymorphism, 𝑁 -ary

polymorphisms, and N-ary plurimorphisms, respectively, and by

𝜅-Pol(A,B, 𝑐, 𝑠), Pol(A,B, 𝑐, 𝑠), and Plu(A,B, 𝑐, 𝑠) the collections of
the corresponding morphisms indexed by their arities.

For a polymorphism Ω, all points in Q2 determined by relation-

matrix pairs lie above or on a line going through (𝑐, 𝑠) with a

nonnegative slope 𝜅. In particular, these points avoid the region

𝑅 = {(𝑥,𝑦) | 𝑥 ≥ 𝑐,𝑦 < 𝑠} and so does any convex combination of

these points (since half-planes are convex). It is easy to see that,

conversely, if the convex hull of these points avoids 𝑅, then Ω is a

polymorphism. This is phrased more generally for plurimorphisms

in item (iii) of the following proposition, in the language of prob-

abilities. It is also geometrically clear that it is enough to require

that the convex hulls of two points avoid 𝑅, leading to item (ii).

Proposition 3.14 (Alt. definitions of plurimorphisms). Let
(A,B) be a pair of valued Σ-structures. Further, letM = PolFeas(A,B),
𝑐, 𝑠 ∈ Q, and let (Ω 𝑗 ) 𝑗∈ 𝐽 be a finite family of weightings of M of
arities (𝑁 𝑗 ) 𝑗∈ 𝐽 . The following are equivalent.

(i) (Ω 𝑗 ) 𝑗∈ 𝐽 is a plurimorphism of (A,B, 𝑐, 𝑠).
(ii) Each pair (Ω 𝑗 ,Ω 𝑗 ′ ) with 𝑗, 𝑗 ′ ∈ 𝐽 is a plurimorphism of

(A,B, 𝑐, 𝑠).
(iii) For every probability distribution

𝜇 ∈ Δ{( 𝑗, 𝜙, 𝑀) | 𝑗 ∈ 𝐽 , (𝜙,𝑀) ∈ Mat(A, 𝑁 𝑗 )}
we have that

E
( 𝑗,𝜙,𝑀 )∼𝜇

Ωin

𝑗 [𝜙,𝑀] ≥ 𝑐 =⇒ E
( 𝑗,𝜙,𝑀 )∼𝜇

Ωout

𝑗 [𝜙,𝑀] ≥ 𝑠 .

In the crisp case, we observed that polymorphisms give us a way

to combine solutions in A to obtain solutions in B. Item (iii) with

|𝐽 | = 1 can be used to show a valued version of this fact: if Ω is a

polymorphism of (A,B, 𝑐, 𝑠), Φ is a normalized payoff formula over

𝑋 , and𝑀 ∈ 𝐴𝑋×𝑁
is such that the expected payoff in A of the 𝑛-th

column when 𝑛 ∼ Ωin
is at least 𝑐 , then the expected payoff in B of

𝑓 rows(𝑀) when 𝑓 ∼ Ωout
is at least 𝑠 . Details are provided in [6].

We also remark that the notion of (𝑐, 𝑠)-approximate polymor-

phism of Brown-Cohen and Raghavendra from [24] (implied by

Definitions 1.6 and 1.9 in their paper) is essentially introduced as

in item (iii) of Proposition 3.14 (for |𝐽 | = 1 and A = B and uniform

distribution Ωin
).

Unlike in the crisp case, we do not introduce a concept of val-

ued function minion. The reason is that we currently do not know

for sure what the right choice of closure properties would be, so

that valued function minions would be exactly collections of pluri-

morphisms of templates. The obvious properties come from item

(ii) and the fact that 𝜅-polymorphisms are closed under convex

combinations and taking minors (defined naturally, see [6]).

3.4 Canonical payoff formulas
A natural valued refinement of canonical formulas in Proposi-

tion 2.13 is the following fact. It is useful for characterizing tem-

plates and definability (which is not discussed in this work), but

the main theorem requires a more complex version of canonical

formulas, presented in Proposition 3.17.

Proposition 3.15 (Canonical payoff formula). Let (A,B) be
a pair of valued Σ-structures, M = PolFeas(A,B), 𝑐, 𝑠 ∈ Q, 𝑁 a
finite set, 𝛼 : 𝑁 → Q, and 𝛽 : M (𝑁 ) → Q. Suppose further that if
A ≤ 𝑐 , then 𝛼 ≤ 𝑐 (i.e., 𝛼 (𝑛) ≤ 𝑐 for all 𝑛 ∈ 𝑁 ). Then the following
are equivalent.

(i) For each 𝜅 ∈ Q+
0
and each Ω ∈ 𝜅-Pol(𝑁 ) (A,B, 𝑐, 𝑠), Ωout [𝛽]−

𝑠 ≥ 𝜅 (Ωin [𝛼] − 𝑐).
(ii) There exists a payoff formula Φ over the set of variables 𝐴𝑁

such that

∀𝑛 ∈ 𝑁 ΦA (proj𝑁𝑛 ) − 𝑐 𝑤 (Φ) ≥ 𝛼 (𝑛) − 𝑐

∀𝑓 ∈ M (𝑁 ) ΦB (𝑓 ) − 𝑠 𝑤 (Φ) ≤ 𝛽 (𝑓 ) − 𝑠

feas(ΦB) = M (𝑁 ) .

Proof. We first observe that item (ii) is equivalent to the follow-

ing condition.

(iii) There exist 𝑤𝜙,𝑀 ∈ Q+
0
, where (𝜙,𝑀) ∈ Mat(A, 𝑁 ), such

that the payoff formula

Φ =
∑︁

(𝜙,𝑀 ) ∈Mat(A,𝑁 )
𝑤𝜙,𝑀 𝜙 (rows(𝑀))
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satisfies all the inequalities (so we skip the requirement on

feas(ΦB)).
Indeed, if (iii), then feas(ΦB) is, as we noted after defining interpreta-
tions of payoff formulas, the interpretation of

∧
(𝜙,𝑀 ) 𝜙 (rows(𝑀))

in feas(B), which is M (𝑁 )
by Proposition 2.13.

On the other hand, every constraint over the set of variables

𝐴𝑁
is of the form 𝜙 (rows(𝑀)) for some matrix 𝑀 . If (ii), then

the first type of inequalities ensures that only 𝜙 (rows(𝑀)) with
𝑀 ∈ Mat(A, 𝑁 ) show up in Φ. By summing up weights and giving

weight zero to constraints that do not show up, we obtain Φ as in

(iii).

Condition (iii) is equivalent, by definitions, to the following

system of linear inequalities with unknowns𝑤𝜙,𝑀 ∈ Q+
0
.

∀𝑛 ∈ 𝑁
∑︁
(𝜙,𝑀 )

−(𝜙A (col𝑛 (𝑀)) − 𝑐)𝑤𝜙,𝑀 ≤ −(𝛼 (𝑛) − 𝑐)

∀𝑓 ∈ M (𝑁 )
∑︁
(𝜙,𝑀 )

(𝜙B (𝑓 rows(𝑀)) − 𝑠)𝑤𝜙,𝑀 ≤ 𝛽 (𝑓 ) − 𝑠 .

Note that, since Mat(A, 𝑁 ) only contains matrices whose columns

are in feas(𝜙A), all the coefficients in the above system of inequali-

ties are finite.

Let 𝐹 be the coefficient matrix of the system and q the right-

hand side vector. Note that 𝐹 can be naturally regarded as a rational

matrix of type (𝑁 ∪ M (𝑁 ) ) ×Mat(A, 𝑁 ) (where the union should

formally be disjoint). Schematically, the system 𝐹y ≤ q is

©«

(𝜙,𝑀)

𝑛 −(𝜙A (col𝑛 (𝑀)) − 𝑐)

𝑓 𝜙B (𝑓 rows(𝑀)) − 𝑠

ª®®®®®®®®®®®®¬
y ≤

©«

−(𝛼 (𝑛) − 𝑐)

𝛽 (𝑓 ) − 𝑠

ª®®®®®®®®®®®®¬
By the Farkas’ lemma (Theorem 3.1), the above system of in-

equalities (and then item (ii)) is equivalent to

∀x ∈ (Q+
0
)𝑁∪M (𝑁 )

(𝐹𝑇 x ≥ 0 =⇒ q𝑇 x ≥ 0) . (FE)

Vectors x correspond to pairs of vectors (xin ∈ (Q+
0
)𝑁 , xout ∈

(Q+
0
)M (𝑁 )

) and these can be written as (𝜃 inΩin, 𝜃outΩout) where
𝜃 in, 𝜃out ∈ Q+

0
, Ωin ∈ Δ𝑁 , and Ωout ∈ ΔM (𝑁 )

. Condition (FE) is

thus

∀𝜃 in, 𝜃out ∈ Q+
0
∀Ω 𝑁 -ary weighting of M (1)

(∀(𝜙,𝑀) ∈Mat(A, 𝑁 ) 𝜃out (Ωout [𝜙,𝑀]−𝑠)

≥ 𝜃 in (Ωin [𝜙,𝑀]−𝑐))

=⇒ 𝜃out (Ωout [𝛽] − 𝑠) ≥ 𝜃 in (Ωin [𝛼] − 𝑐) .

For 𝜃out > 0, the condition is exactly saying that for each 𝜅 ∈ Q+
0

and Ω ∈ 𝜅-Pol(𝑁 ) (A,B, 𝑐, 𝑠), we have Ωout [𝛽] − 𝑠 ≥ 𝜅 (Ωin [𝛼] − 𝑐),
where 𝜅 = 𝜃 in/𝜃out, which is exactly (i). It remains to observe that

(1) is void for 𝜃out = 0 and 𝜃 in > 0. Indeed, the left-hand side of the

implication in (1) holds only if A ≤ 𝑐 (by considering matrices with

all the columns equal). In that case we have 𝛼 ≤ 𝑐 by assumptions

of the proposition, therefore the right-hand side of the implication

holds as well. □

Proposition 3.16 (Characterization of templates). Let (A,B)
be a pair of valued Σ-structures and 𝑐, 𝑠 ∈ Q. The following are equiv-
alent.

(i) (A,B, 𝑐, 𝑠) is a valued promise template.
(ii) For each payoff formula Φ over the set of variables 𝐴

ΦA (id𝐴) ≥ 𝑐𝑤 (Φ) =⇒ ∃ℎ ∈ 𝐵𝐴 ΦB (ℎ) ≥ 𝑠𝑤 (Φ).

(iii) There exists a unary polymorphism of (A,B, 𝑐, 𝑠).

Now we state the mentioned more complex version of canonical

formula required for the main theorem. The difference is that in-

stead of having one instance Φ as in item (ii) of Proposition 3.15, we

simultaneously create multiple instances (Φ𝑗 ) 𝑗∈ 𝐽 and allow suit-

able scaling and shifts. Moreover, in order to slightly simplify our

formulation of the valued version of the minor condition problem,

we also shift the 𝛼 by 𝑐 and 𝛽 by 𝑠 .

Proposition 3.17 (Improved canonical payoff formulas). Let
• (A,B) be a pair of Σ-structures, M = PolFeas(A,B), 𝑐, 𝑠 ∈ Q,
• (𝑁 𝑗 ) 𝑗∈ 𝐽 a family of finite sets (arities) with 𝐽 finite,
• (𝛼 𝑗 ) 𝑗∈ 𝐽 a family of functions 𝛼 𝑗 : 𝑁 𝑗 → Q, and
• (𝛽 𝑗 ) 𝑗∈ 𝐽 a family of functions 𝛽 𝑗 : M (𝑁 𝑗 ) → Q.

The following are equivalent.
(i) For each𝜅 ∈ Q+

0
and for each family (Ω 𝑗 ) 𝑗∈ 𝐽 of𝜅-polymorphisms

of (A,B, 𝑐, 𝑠),

𝜅
∑︁
𝑗∈ 𝐽

Ωin

𝑗 [𝛼 𝑗 ] ≥ 0 =⇒
∑︁
𝑗∈ 𝐽

Ωout

𝑗 [𝛽 𝑗 ] ≥ 0.

(ii) There exist a family of payoff formulas (Φ𝑗 ) 𝑗∈ 𝐽 with Φ𝑗 over
the set of variables𝐴𝑁 𝑗 , a number 𝛾 ∈ Q+

0
(scaling factor), and

families of rational numbers (𝛿 in
𝑗
, 𝛿out

𝑗
) 𝑗∈ 𝐽 (input and output

shifts) such that

∀𝑗 ∈ 𝐽 ∀𝑛 ∈ 𝑁 𝑗 ΦA
𝑗 (proj

𝑁 𝑗

𝑛 ) − 𝑐 𝑤 (Φ𝑗 ) ≥ 𝛾𝛼 𝑗 (𝑛) + 𝛿 in𝑗

∀𝑗 ∈ 𝐽 ∀𝑓 ∈ M (𝑁 𝑗 ) ΦB
𝑗 (𝑓 ) − 𝑠 𝑤 (Φ𝑗 ) ≤ 𝛽 𝑗 (𝑓 ) − 𝛿out𝑗∑︁

𝑗∈ 𝐽
𝛿 in𝑗 ≥ 0∑︁

𝑗∈ 𝐽
𝛿out𝑗 ≥ 0

∀𝑗 ∈ 𝐽 feas(ΦB
𝑗 ) = M (𝑁 𝑗 ) .

Moreover, for a fixed (A,B), if there is an upper bound on the sizes of
the 𝑁 𝑗 then the payoff formulas (Φ𝑗 ) 𝑗∈ 𝐽 , the scaling factor, and the
shifts can be computed from 𝛼 𝑗 , 𝛽 𝑗 , 𝑁 𝑗 (or decided that such formulas
do not exist) in polynomial time in the size of the input.

4 VALUED MINION HOMOMORPHISMS AND
REDUCTIONS

For the reason explained in the last paragraph of Section 3.3 it is

not clear yet what a valued minion should be. For now we choose

the most liberal definition, which should be regarded as temporary.
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On the other hand, the concept of valued minion homomorphism

is quite natural.

Definition 4.1 (Valued minion). Let M be a minion. A valued
minion over M is a collectionM = (M(N) ) indexed by finite fam-

ilies of finite sets N = (𝑁 𝑗 ) 𝑗∈ 𝐽 such that elements of M(N)
are

families (Ω 𝑗 ) 𝑗∈ 𝐽 where each Ω 𝑗 is an 𝑁 𝑗 -ary weighting of M .

Note that the collection of plurimorphisms of a valued promise

template is a valued minion over the minion of polymorphisms of

its feasibility template.

Definition 4.2 (Valued minion homomorphisms). Let M, M′
be

valued minions over minions M and M ′
, respectively. A valued

minion homomorphism M → M′
is a probability distribution Ξ

on the set of minion homomorphisms M → M ′
such that, for

every finite set 𝐽 , every family of finite sets N = (𝑁 𝑗 ) 𝑗∈ 𝐽 , and
every (Ω 𝑗 ) 𝑗∈ 𝐽 ∈ M(N)

, we have (Ξ(Ω 𝑗 )) 𝑗∈ 𝐽 ∈ M′(N)
, where

Ξ(Ω 𝑗 ) = (Ωin

𝑗
,Ξ(Ωout

𝑗
)).13

We are ready to state the main theorem of this paper.

Theorem 4.3 (Reductions via valued minion homomorphism).

Let (A,B, 𝑐, 𝑠) and (A′,B′, 𝑐′, 𝑠′) be valued promise templates such
that the former one has a no instance. If there is a valued min-
ion homomorphism from Plu(A,B, 𝑐, 𝑠) to Plu(A′,B′, 𝑐′, 𝑠′), then
PCSP(A′,B′, 𝑐′, 𝑠′) ≤ PCSP(A,B, 𝑐, 𝑠).

The proof uses the same strategy as in the crisp case. We in-

troduce a valued version of the minor condition problem (VMC)

and prove that each PCSP is equivalent to a VMC. Moreover, val-

ued minion homomorphisms give us reductions between VMCs, cf.

the following figure, in which (A,B, 𝑐, 𝑠), (A′,B′, 𝑐′, 𝑠′) are valued
promise templates, M = PolFeas(A,B), M ′ = PolFeas(A′,B′),
M = Plu(A,B, 𝑐, 𝑠), M′ = Plu(A′,B′, 𝑐′, 𝑠′), and 𝑘 is sufficiently

large.

PCSP(A′,B′, 𝑐′, 𝑠′) PCSP(A,B, 𝑐, 𝑠)

VMC(M′,M ′, 𝑘) VMC(M,M , 𝑘)

4.1 Valued Minor Conditions
Definition 4.4 (Valued Minor Condition Problem). Given a minion

M , a valued minionM over M , and an integer 𝑘 , the Valued Minor

Condition Problem for M ,M, and 𝑘 , denoted by VMC(M ,M, 𝑘),
is the following problem.

Input 1. disjoint sets 𝑈 and 𝑉 (the sets of variables),
2. a set 𝐷𝑥 with |𝐷𝑥 | ≤ 𝑘 for every 𝑥 ∈ 𝑈 ∪ 𝑉 (the

domain of 𝑥 ),

3. a set of formal expressions of the form 𝜋 (𝑢) = 𝑣 , where

𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑉 , and 𝜋 : 𝐷𝑢 → 𝐷𝑣 (theminor conditions),
4. for each 𝑢 ∈ 𝑈 , a pair of functions 𝛼𝑢 : 𝐷𝑢 → Q, 𝛽𝑢 :

M (𝐷𝑢 ) → Q (the input and output payoff functions)

13
Recall here that Ξ(Ωout

𝑗
) is the probability distribution that it sampled by sampling

𝜉 ∼ Ξ, sampling 𝑓 ∼ Ωout

𝑗
, and computing 𝜉 (𝑓 ) .

which satisfy the following condition.

∀(Ω𝑢 )𝑢∈𝑈 ∈ M(𝐷𝑢 )𝑢∈𝑈∑︁
𝑢∈𝑈

Ωin

𝑢 [𝛼𝑢 ] ≥ 0 =⇒
∑︁
𝑢∈𝑈

Ωout

𝑢 [𝛽𝑢 ] ≥ 0. (★)

Output yes if there exists a function ℎ from 𝑈 ∪ 𝑉 with ℎ(𝑥) ∈
𝐷𝑥 (for each 𝑥 ∈ 𝑈 ∪ 𝑉 ) such that, for each minor

condition 𝜋 (𝑢) = 𝑣 , we have 𝜋 (ℎ(𝑢)) = ℎ(𝑣), and∑
𝑢∈𝑈 𝛼𝑢 (ℎ(𝑢)) ≥ 0.

no if there does not exist a function ℎ from 𝑈 ∪𝑉 with

ℎ(𝑥) ∈ M (𝐷𝑥 )
such that, for each minor condition

𝜋 (𝑢) = 𝑣 , we have M (𝜋 ) (ℎ(𝑢)) = ℎ(𝑣), and∑
𝑢∈𝑈 𝛽𝑢 (ℎ(𝑢)) ≥ 0.

Note that unlike in the crisp case, the VMC is not a PCSP over a

valued promise template, at least not in an obvious way. We also

remark that, because of our temporary, too liberal definition of

valued minions, the VMC does not need to make sense – the sets of

yes and no instances can intersect. We show in the full version [6]

that the VMC makes sense for plurimorphism minions of valued

promise templates.

The proof of Theorem 4.3 is based on three reductions: from

PCSP to VMC, from VMC to PCSP, and between VMCs. The last

one is the simplest.

Proposition 4.5 (Between VMCs). LetM,M′ be valued min-
ions over minions M and M ′, respectively, such that there exists a
valued minion homomorphismM→ M′. Then VMC(M ′,M′, 𝑘) ≤
VMC(M ,M, 𝑘) for any positive integer 𝑘 .

Proof sketch. For an instance of VMC(M ′,M′, 𝑘) we produce
an instance of VMC(M ,M, 𝑘) that is unchanged except for apply-

ing Ξ to the output payoff functions, that is, for each 𝑢 ∈ 𝑈 we

define 𝛽𝑢 = E𝜉∼Ξ 𝛽′𝑢 ◦𝜉 (𝐷𝑢 )
, where 𝛽′𝑢 is the output payoff function

for 𝑢 in the original instance. The correctness of this reduction is

verified in the full version [6]. □

4.2 From PCSP to VMC
The following object is useful for the reduction from a PCSP to

VMC (in the crisp setting as well).

Definition 4.6 (Canonical matrix). Let𝜓 ⊆ 𝐴𝑍
be a relation. The

canonical matrix for𝜓 is the matrix CM[𝜓 ] ∈ 𝐴𝑍×𝜓
defined by

CM[𝜓 ] (𝑧, a) = a(𝑧) for every 𝑧 ∈ 𝑍, a ∈ 𝜓 .

Proposition 4.7 (From PCSP to VMC). Let (A,B, 𝑐, 𝑠) be a val-
ued promise template, M = PolFeas(A,B), andM = Pol(A,B, 𝑐, 𝑠).
If 𝑘 is a sufficiently large integer, then we have PCSP(A,B, 𝑐, 𝑠) ≤
VMC(M ,M, 𝑘).

Proof sketch. From a payoff formula Φ =
∑
𝑖∈𝐼 𝑤𝑖𝜙𝑖 (x𝑖 ) over

𝑋 (where 𝑤𝑖 ∈ Q+
0
), we create an instance of VMC(M ,M, 𝑘) as

follows. The sets 𝑈 ,𝑉 , 𝐷𝑥 and minor conditions are created by

applying the reduction detailed in the full version [6] to the crisp

template (feas(A), feas(B)) and conjunctive formula

∧
𝑖∈𝐼 𝜙𝑖 (x𝑖 ).

That is, for a large enough 𝑘 we define these objects as follows.

1. 𝑈 = 𝐼 , 𝑉 = 𝑋 .

2. 𝐷𝑖 = feas(𝜙A
𝑖
), 𝐷𝑥 = 𝐴

sort(𝑥 ) for each 𝑖 ∈ 𝐼 , 𝑥 ∈ 𝑋 .
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3. For each 𝑖 ∈ 𝐼 and 𝑧 ∈ ar(𝜙𝑖 ), introduce the constraint

𝜋𝑖,𝑧 (𝑖) = x𝑖 (𝑧), where 𝜋𝑖,𝑧 is the domain-codomain restric-

tion of proj
ar(𝜙𝑖 )
𝑧 to feas(𝜙A

𝑖
) and 𝐴

sort(𝑧 ) .

The input and output payoff functions are defined as follows.

4. 𝛼𝑖 (a) = 𝑤𝑖 (𝜙A𝑖 (a) − 𝑐),
𝛽𝑖 (𝑓 ) = 𝑤𝑖 (𝜙B𝑖 (𝑓 rows(CM[feas(𝜙A

𝑖
)])) − 𝑠)

for each 𝑖 ∈ 𝐼 , a ∈ feas(𝜙A
𝑖
), and 𝑓 ∈ M (𝐷𝑖 )

.

For this to be a valid instance, we require 𝑘 ≥ |feas(𝜙A) | and
𝑘 ≥ |𝐴

sort(𝑥 ) | for every 𝜙 ∈ 𝜎 and 𝑥 ∈ 𝑋 .

We need to verify condition (★). In fact, a stronger condition

holds:

∀𝜅 ∈ Q+
0
∀𝑖 ∈ 𝐼 ∀Ω ∈ 𝜅-Pol(𝐷𝑖 ) (A,B) Ωout [𝛽𝑖 ] ≥ 𝜅Ωin [𝛼𝑖 ] (★★)

Notice that condition (★★) is indeed stronger than (★): assum-

ing (★★), (Ω𝑖 )𝑖∈𝐼 ∈ M(𝐷𝑖 )𝑖∈𝐼
, and

∑
𝑖∈𝐼 Ω

in

𝑖
[𝛼𝑖 ] ≥ 0, we obtain∑

𝑖∈𝐼 Ω
out

𝑖
[𝛽𝑖 ] ≥

∑
𝑖∈𝐼 𝜅Ω

in

𝑖
[𝛼𝑖 ] ≥ 0, as required.

Condition (★★) and the soundness and completeness of this re-

duction are verified in the full version [6]. □

It would be possible to make a version of VMC based on (★★),

𝜅-polymorphisms for various 𝜅, and appropriately defined valued

minions and homomorphism (and this is in fact what is done for

the constant factor approximation setting in [6] for a fixed 𝜅). The

chosen version, albeit more complicated because of the concept of

plurimorphisms, requires less information about 𝜅-polymorphisms

and gives a stronger reduction result.

4.3 From VMC TO PCSP
The idea of the reduction from VMC to PCSP is similar to the proof

in the crisp case (cf. [6]) but we use improved canonical payoff

formulas (Proposition 3.17) instead of canonical formulas (Proposi-

tion 2.13). A technical issue is that condition (★) only guarantees

condition (i) in Proposition 3.17 for 𝜅 > 0. This causes a slight

complication.

Proposition 4.8 (From VMC to PCSP). Let (A,B, 𝑐, 𝑠) be a val-
ued promise template such that PCSP(A,B, 𝑐, 𝑠) has a no instance,
M = PolFeas(A,B), andM = Pol(A,B, 𝑐, 𝑠). For any positive integer
𝑘 , VMC(M ,M, 𝑘) ≤ PCSP(A,B, 𝑐, 𝑠).

Proof sketch. Consider a VMC instance as described in Defi-

nition 4.4.

We try to find a collection of payoff formulas (Φ𝑢 )𝑢∈𝑈 and ra-

tionals 𝛾 ≥ 0, 𝛿 in𝑢 , 𝛿out𝑢 such that all the properties in item (ii)

of Proposition 3.17 are satisfied (where 𝐽 = 𝑈 and 𝑁𝑢 = 𝐷𝑢 ). By

that proposition, one can find such a collection or decide that it

does not exist, in polynomial time.

If we found such formulas, then the reduction is done very much

like in the crisp case, as follows.

In the first step we also define a payoff formula Φ𝑣 for each 𝑣 ∈ 𝑉

as Φ𝑣 =
∑

(𝜙,𝑀 ) ∈Mat(A,𝐷𝑣 ) 0 · 𝜙 (rows(𝑀)) over the set of variables
𝐴𝐷𝑣

, i.e., all the constraints are given zero weight. Now we have a

payoff formula Φ𝑥 over the set of variables𝐴𝐷𝑥
for every 𝑥 ∈ 𝑈 ∪𝑉 .

We make the variable sets disjoint and define Φ as the sum of all

the Φ𝑥 , so Φ is a payoff formula over a set of variables 𝑌 which is a

disjoint union of𝐴𝐷𝑥
. Note that assignments 𝑓 : 𝑌 → 𝐴 correspond

exactly to collections (𝑓𝑥 : 𝐴𝐷𝑥 → 𝐴)𝑥∈𝑋 , and similarly for 𝐵.

In the second step, we create from Φ the resulting instance Ψ of

PCSP(A,B, 𝑐, 𝑠) by identifying, for each minor condition 𝜋 (𝑢) = 𝑣

and each a ∈ 𝐴𝐷𝑣
, the variables (a𝜋,𝑢) and (a, 𝑣). Now assign-

ments for Ψ from the new set of variables to 𝐴 correspond to those

that satisfy 𝑓
(𝜋 )
𝑢 = 𝑓𝑣 for each minor condition 𝜋 (𝑢) = 𝑣 , and an

analogous observation holds for assignments to 𝐵.

Properties in (ii) guarantee the completeness and soundness of

this reduction; details are in the full version [6], where we also deal

with the case that formulas Φ𝑢 do not exist (which is the reason for

the slightly unpleasant assumption that no instances exist). □

5 EXAMPLES OF HOMOMORPHISMS
Examples of valued minion homomorphisms of course include

minion homomorphisms for crisp templates. More precisely, if

(A,B, 0, 0) and (A′,B′, 0, 0) are templates such that all symbols in

all four structures are interpreted as (−∞, 0)-valued relations and 𝜉
is a minion homomorphism from PolFeas(A,B) to PolFeas(A′,B′),
then the probability distribution Ξ that assigns probability one

to 𝜉 is a valued minion homomorphism from Plu(A,B, 0, 0) to

Plu(A′,B′, 0, 0).
Recall that the reduction theorem fully explains hardness for

crisp CSPs (but not for crisp PCSPs [4]). In this section we discuss

two types of situations in which a reduction is (or is not) explained

by the reduction theorem in the valued setting.

5.1 Gadget reductions
We start with a very simple example of a gadget reduction.

Example 5.1 (3LIN2(𝑐, 𝑠) ≤ 5LIN2(𝑐, 𝑠), 𝑐 ≥ 𝑠). Rename rela-

tional symbols for 3LIN2(𝑐, 𝑠) (see Example 2.6) to 𝜙 ′
0
, 𝜙 ′

1
to distin-

guish them from relational symbols for 5LIN2(𝑐, 𝑠). The reduction
is: replace every constraint𝜙 ′

𝑖
(𝑥1, 𝑥2, 𝑥3) in the input payoff formula

by 𝜙𝑖 (𝑥1, 𝑥2, 𝑥3, 𝑥3, 𝑥3).

In the example, the gadget for 𝜙 ′
𝑖
(𝑥1, 𝑥2, 𝑥3) is the payoff formula

𝜙𝑖 (𝑥1, 𝑥2, 𝑥3, 𝑥3, 𝑥3). More generally, one can replace each constraint

by an arbitrary payoff formula, possibly introducing additional

variables. The following observation formulates (simplified) natural

conditions under which such a gadget replacement is a reduction;

moreover, the reduction is explained by the reduction theorem, via

particularly strong homomorphisms.

Proposition 5.2 (Gadgets andhomomorphisms). Let (A,B, 𝑐, 𝑠)
and (A′,B′, 𝑐′, 𝑠′) be valued promise templates in signatures Σ, Σ′

such that PolFeas(A,B) = PolFeas(A′,B′). Suppose that for every
𝜙 ∈ Σ′ of arity 𝑍 = ar(𝜙) there exists a payoff Σ-formula Ψ over the
set of variables 𝑍 ∪ 𝑌 , where 𝑌 is a finite set disjoint from 𝑍 , such
that the following conditions hold.

• ∀a𝑍 ∈ 𝐴𝑍 ∃a𝑌 ∈ 𝐴𝑌 ΨA (a𝑍 , a𝑌 ) − 𝑐 𝑤 (Ψ) ≥ 𝜙A
′ (a𝑍 ) − 𝑐′

• ∀b𝑍 ∈ 𝐵𝑍 ∀b𝑌 ∈ 𝐵𝑌 ΨB (b𝑍 , b𝑌 ) − 𝑠 𝑤 (Ψ) ≤ 𝜙B
′ (b𝑍 ) − 𝑠′

Then, for every 𝜅 ∈ Q+
0
, every 𝜅-polymorphism of (A,B, 𝑐, 𝑠) is

also a 𝜅-polymorphism of (A′,B′, 𝑐′, 𝑠′). In particular, Ξ with prob-
ability one on the identity is a valued minion homomorphism from
Plu(A,B, 𝑐, 𝑠) to Plu(A′,B′, 𝑐′, 𝑠′).

The question when payoff Σ-formulas Ψ in Proposition 5.2 ex-

ist (and, more generally, understanding of more complex gadget
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reductions) is closely related to questions about definability — a

direction we leave for future work.

Sometimes a reduction can be obtained by replacing constraints

by gadgets as above and merging some of the additional variables,

cf. [11]. The following is an example that can be explained by the

reduction theorem (see [6]).

Example 5.3 (3LIN2(𝑐, 𝑠) ≤ 4LIN2(𝑐, 𝑠), 𝑐 ≥ 𝑠). We replace every

constraint 𝜙𝑖 (𝑥1, 𝑥2, 𝑥3) by 𝜙𝑖 (𝑥1, 𝑥2, 𝑥3, 𝑧), where 𝑧 is a fresh vari-

able common to all the constraints. The reduction works since if an

assignment for the new instance assigns 0 to 𝑧, then forgetting 𝑧

gives an assignment for the original instance with the same payoff;

and if 𝑧 is assigned 1, then we additionally flip the values 0 ↔ 1.

We do not have a satisfactory general explanation of the previous

example. In fact, we do not think it is possible to provide it using

our version of the reduction theorem. This restraint stems from the

following example.

Example 5.4 (3LIN2 and 3LIN2(1, 1)). The 3LIN2 problem can be

seen as (−∞, 0)-valued. Then, 3LIN2 and 3LIN2(1, 1) are equivalent
problems. Nevertheless, there is even no minion homomorphism

from PolFeas(3LIN2(1, 1)) (which consists of all Boolean functions)

to PolFeas(3LIN2) (which consists of parity functions depending on
odd number of coordinates), since e.g. everyminion homomorphism

maps commutative binary operations (which the first minion has)

to commutative binary operations (which the second minion does

not have).

5.2 Homomorphisms to Gap Label Cover
Recall from Example 3.7 that for every 1 ≥ 𝜖 > 0, there exist 𝐷, 𝐸

such that GLC𝐷,𝐸 (1, 𝜖) is NP-hard. This result is a starting point for
many inapproximability results, including those in an influential

paper by Håstad [35].

The following proposition gives a sufficient condition for a re-

duction from the Gap Label Cover, in particular, it isolates the core

of Håstad’s results. The reduction and its correctness is simple (sim-

ilar to the reduction from MC to PCSP in the crisp case, cf. [6]) and

not needed in this paper, so we leave it to the reader.

The statement uses instances over the set of variables 𝐴𝐷 ∪𝐴𝐸
.

Note that assignments 𝐴𝐷 ∪𝐴𝐸 → 𝐴′
exactly correspond to pairs

of functions (𝑓𝐷 : 𝐴𝐷 → 𝐴′, 𝑓𝐸 : 𝐴𝐸 → 𝐴′) and we write such

assignments in this way.

Proposition 5.5 (Reductions from GLC). Let (A,B, 𝑐, 𝑠) be a
valued promise template, M = PolFeas(A,B), 𝐷 and 𝐸 finite disjoint
sets, and 𝜖 ∈ R. Suppose that there exist

• mappings Λ𝐷 : M (𝐷 ) → Δ𝐷 and Λ𝐸 : M (𝐸 ) → Δ𝐸,
• for every 𝜋 : 𝐷 → 𝐸 a normalized payoff formula Φ𝜋 over the
set of variables 𝐴𝐷 ∪𝐴𝐸 , and a linear nondecreasing function
𝛾𝜋 : R→ R with 𝛾𝜋 (𝑠) ≥ 𝜖

such that for every 𝜋 : 𝐷 → 𝐸

1. ΦA
𝜋 (proj𝐷𝑑 , proj

𝐸
𝜋 (𝑑 ) ) ≥ 𝑐 for every 𝑑 ∈ 𝐷 , and

2. 𝛾𝜋 (ΦB
𝜋 (𝑓𝐷 , 𝑓𝐸 )) ≤ E𝑑∼Λ𝐷 (𝑓𝐷 )

𝑒∼Λ𝐸 (𝑓𝐸 )
𝜋 (𝑑, 𝑒) for every

𝑓𝐷 ∈ M (𝐷 ) , 𝑓𝐸 ∈ M (𝐸 ) .

Then GLC𝐷,𝐸 (1, 𝜖) ≤ PCSP(A,B, 𝑐, 𝑠).

Example 5.6 (3LIN2(1 − 𝛿, 1/2 + 𝛿)). The first inapproximability

result in [35] follows from the fact that for each 1/4 ≥ 𝛿 > 0, there

exists 𝜖 (namely 16𝛿3) such that the template 3LIN2(1 − 𝛿, 1/2 + 𝛿)
satisfies the conditions of Proposition 5.5 for every 𝐷 and 𝐸.

The mapping Λ𝐷 (and similarly Λ𝐸 ) is a composition of two

mappings. The first one is “folding” from M (𝐷 )
to the set F of

folded functions, i.e., those satisfying 𝑓 (a) = 1 − 𝑓 (1 − a) (where
(1 − a) (𝑧) = 1 − a(𝑧) at each coordinate 𝑧). The second one assigns

to 𝑓 ∈ F a probability distribution on 𝐷 based on the size of the

Fourier coefficients of 𝑓 . The definition of Φ𝜋 is according to the

“long code test” in [35]. Details are worked out in the full version [6].

Wewill show in Theorem 5.8 that the reduction in Proposition 5.5

is explained by a valued minion homomorphism. But first we spell

out and somewhat simplify the condition for homomorphisms into

the plurimorphisms of GLC𝐷,𝐸 (1, 𝜖). The simplification is that we

only need to consider polymorphisms, not plurimorphisms; it fol-

lows from the proof that this is always the case when considering

homomorphisms to PCSPs with perfect completeness.

Note that 𝑁 -ary functions in PolFeas(GLC𝐷,𝐸 (1, 𝜖)) correspond
exactly to pairs (𝑝𝐷 : 𝐷𝑁 → 𝐷, 𝑝𝐸 : 𝐸𝑁 → 𝐸), and every pair

correspond to such a function since all tuples are feasible.

Proposition 5.7 (Simplified homomorphisms to GLC). Let
(A,B, 𝑐, 𝑠) be a valued promise template, M = PolFeas(A,B), 𝐷 , 𝐸
finite sets, 𝜖 ∈ R, and Ξ a probability distribution on the set of minion
homomorphisms M → PolFeas(GLC𝐷,𝐸 (1, 𝜖)). The following are
equivalent.

(i) Ξ is a valued minion homomorphism from Plu(A,B, 𝑐, 𝑠) to
Plu(GLC𝐷,𝐸 (1, 𝜖)).

(ii) For every 𝑁 ∈ FinSet, Ω ∈ Pol
(𝑁 ) (A,B, 𝑐, 𝑠), 𝜋 : 𝐷 → 𝐸,

d ∈ 𝐷𝑁 , and e ∈ 𝐸𝑁

∀𝑛 ∈ Supp(Ωin) 𝜋 (d(𝑛)) = e(𝑛)
⇒ E

(𝑝𝐷 ,𝑝𝐸 )∼Ξ(Ωout )
𝜋 (𝑝𝐷 (d), 𝑝𝐸 (e)) ≥ 𝜖.

Theorem 5.8 (Reductions from GLC via homomorphisms).

Under the assumptions of Proposition 5.5, there is a valued minion
homomorphism from Plu(A,B, 𝑐, 𝑠) to Plu(GLC𝐷,𝐸 (1, 𝜖)).

Proof sketch. Let Λ𝐷 ,Λ𝐸 , Φ𝜋 , 𝛾𝜋 be as in Proposition 5.5. We

start by defining a probability distribution Ξ on the set of minion

homomorphisms M → PolFeas(GLC𝐷,𝐸 (1, 𝜖)). A minion homo-

morphism 𝜉 is sampled from Ξ as follows.

• Pick 𝜆𝐷 : M (𝐷 ) → 𝐷 by sampling 𝜆𝐷 (𝑓 ) ∈ 𝐷 according to

Λ𝐷 (𝑓 ), independently for each 𝑓 ∈ M (𝐷 )
.

• Pick 𝜆𝐸 : M (𝐸 ) → 𝐸 similarly using Λ𝐸 (𝑓 ).
• Define 𝜉 by 𝜉 (𝑁 ) (𝑓 ) = (𝜉 (𝑁 )

𝐷
(𝑓 ), 𝜉 (𝑁 )

𝐸
(𝑓 )) for every 𝑁 ∈

FinSet and 𝑓 ∈ M (𝑁 )
, where for d ∈ 𝐷𝑁

, e ∈ 𝐸𝑁 we define

𝜉
(𝑁 )
𝐷

(𝑓 ) (d) = 𝜆𝐷 (𝑓 (d) ), 𝜉
(𝑁 )
𝐸

(𝑓 ) (e) = 𝜆𝐸 (𝑓 (e) ).

The verification that 𝜉 preserves minors and that Ξ is a valued

minion homomorphism is in the full version [6].

We remark that the construction of 𝜉 from 𝜆 = (𝜆𝐷 , 𝜆𝐸 ) is not ad
hoc: every minion homomorphism 𝜉 can be constructed in this way.

We refer to [4, Lemma 4.4] for details in the one-sorted case. □
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6 CONCLUSION
Ourmain result, Theorem 4.3, shows that computational complexity

is determined by symmetries in the vast framework of valued PCSPs.

We see this result as a step towards the general goal of providing

uniform descriptions of algorithms, tractability boundaries, and

reductions.

Crisp non-promise CSPs already include many important com-

binatorial problems. Valued PCSPs generalize this framework in

two directions: towards approximation (promises) and optimization

(values). A further vast enlargement in the combinatorial direction

would be provided by incorporating interesting classes of infinite

structures. In fact, [22, 53] already contribute to this project in the

constant factor setting.

There are still many basic questions and theory-building tasks

left open already for finite-domain valued PCSPs: to incorporate

the trivial reduction as in e.g. Example 5.4; to characterize gadget re-

ductions (or versions of definability) in terms of polymorphisms or

plurimorphisms; to characterize plurimorphism valued minions of

templates; to clarify whether plurimorphisms are necessary to deter-

mine computational complexity or enough information is provided

already by polymorphisms; to develop methods for proving nonex-

istence of homomorphisms; to revisit the valued CSP dichotomy

without fixed threshold [43] and Raghavendra’s result on unique

games hardness of approximation for all MaxCSPs [48]; among oth-

ers. An interesting special case for a full complexity classification

is the valued non-promise CSPs with fixed threshold.

The most exciting (and likely challenging) research goal to us

is to improve the reduction theorem so that it explains the PCP

theorem [31] (hardness of Gap Label Cover) or even the Unique

Games Conjecture [40] (hardness of Unique Games), or some special

cases such as the 2-to-2 Conjecture (now theorem [41]). Crucially,

both Gap Label Cover and Unique Games are within our framework,

and we can now thus at least specify the aim: to weaken the concept

of valued minion homomorphism so that, e.g., plurimorphisms of

GLC𝐷,𝐸 (1, 𝜖) homomorphically map to the projection minion. A

reason for cautious optimism is the recent “Baby PCP” paper [9]

that contributes to this effort in the crisp setting.
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