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1 Introduction

The statistical modelling of language, together with
advances in wide-coverage grammar development,
have led to high levels of robustness and efficiency
in NLP systems and made linguistically motivated
large-scale language processing a possibility (Mat-
suzaki et al., 2007; Kaplan et al., 2004). This pa-
per describes anNLP system which is based on syn-
tactic and semantic formalisms from theoretical lin-
guistics, and which we have used to analyse the en-
tire Gigaword corpus (1 billion words) in less than
5 days using only 18 processors. This combination
of detail and speed of analysis represents a break-
through inNLP technology.

The system is built around a wide-coverage Com-
binatory Categorial Grammar (CCG) parser (Clark
and Curran, 2004b). The parser not only recovers
the local dependencies output by treebank parsers
such as Collins (2003), but also the long-range dep-
dendencies inherent in constructions such as extrac-
tion and coordination.CCG is a lexicalized gram-
mar formalism, so that each word in a sentence is
assigned an elementary syntactic structure, inCCG’s
case a lexical category expressing subcategorisation
information. Statistical tagging techniques can as-
sign lexical categories with high accuracy and low
ambiguity (Curran et al., 2006). The combination of
finite-state supertagging and highly engineered C++
leads to a parser which can analyse up to 30 sen-
tences per second on standard hardware (Clark and
Curran, 2004a).

The C& C tools also contain a number of Maxi-
mum Entropy taggers, including theCCG supertag-
ger, aPOS tagger (Curran and Clark, 2003a), chun-

ker, and named entity recogniser (Curran and Clark,
2003b). The taggers are highly efficient, with pro-
cessing speeds of over 100,000 words per second.

Finally, the various components, including the
morphological analyser morpha (Minnen et al.,
2001), are combined into a single program. The out-
put from this program — aCCGderivation,POStags,
lemmas, and named entity tags — is used by the
module Boxer (Bos, 2005) to produce interpretable
structure in the form of Discourse Representation
Structures (DRSs).

2 The CCG Parser

The grammar used by the parser is extracted from
CCGbank, aCCG version of the Penn Treebank
(Hockenmaier, 2003). The grammar consists of 425
lexical categories, expressing subcategorisation in-
formation, plus a small number of combinatory rules
which combine the categories (Steedman, 2000). A
Maximum Entropy supertagger first assigns lexical
categories to the words in a sentence (Curran et al.,
2006), which are then combined by the parser using
the combinatory rules and theCKY algorithm.

Clark and Curran (2004b) describes log-linear
parsing models forCCG. The features in the models
are defined over local parts ofCCG derivations and
include word-word dependencies. A disadvantage
of the log-linear models is that they require clus-
ter computing resources for practical training (Clark
and Curran, 2004b). We have also investigated per-
ceptron training for the parser (Clark and Curran,
2007b), obtaining comparable accuracy scores and
similar training times (a few hours) compared with
the log-linear models. The significant advantage of



the perceptron training is that it only requires a sin-
gle processor. The training is online, updating the
model parameters one sentence at a time, and it con-
verges in a few passes over the CCGbank data.

A packed chart representation allows efficient de-
coding, with the same algorithm — the Viterbi al-
gorithm — finding the highest scoring derivation for
the log-linear and perceptron models.

2.1 The Supertagger

The supertagger uses Maximum Entropy tagging
techniques (Section 3) to assign a set of lexical cate-
gories to each word (Curran et al., 2006). Supertag-
ging has been especially successful forCCG: Clark
and Curran (2004a) demonstrates the considerable
increases in speed that can be obtained through use
of a supertagger. The supertagger interacts with the
parser in an adaptive fashion: initially it assigns
a small number of categories, on average, to each
word in the sentence, and the parser attempts to cre-
ate a spanning analysis. If this is not possible, the
supertagger assigns more categories, and this pro-
cess continues until a spanning analysis is found.

2.2 Parser Output

The parser produces various types of output. Fig-
ure 1 shows the dependency output for the exam-
ple sentenceBut Mr. Barnum called that a worst-
case scenario.TheCCGdependencies are defined in
terms of the arguments within lexical categories; for
example,〈(S [dcl ]\NP1 )/NP2 , 2〉 represents the di-
rect object of a transitive verb. The parser also
outputs grammatical relations (GRs) consistent with
Briscoe et al. (2006). TheGRs are derived through a
manually created mapping from theCCG dependen-
cies, together with a python post-processing script
which attempts to remove any differences between
the two annotation schemes (for example the way in
which coordination is analysed).

The parser has been evaluated on the predicate-
argument dependencies in CCGbank, obtaining la-
belled precision and recall scores of 84.8% and
84.5% on Section 23. We have also evaluated the
parser on DepBank, using the Grammatical Rela-
tions output. The parser scores 82.4% labelled pre-
cision and 81.2% labelled recall overall. Clark and
Curran (2007a) gives precison and recall scores bro-
ken down by relation type and also compares the

Mr._2 N/N_1 1 Barnum_3
called_4 ((S[dcl]\NP_1)/NP_2)/NP_3 3 that_5
worst-case_7 N/N_1 1 scenario_8
a_6 NP[nb]/N_1 1 scenario_8
called_4 ((S[dcl]\NP_1)/NP_2)/NP_3 2 scenario_8
called_4 ((S[dcl]\NP_1)/NP_2)/NP_3 1 Barnum_3
But_1 S[X]/S[X]_1 1 called_4

(ncmod _ Barnum_3 Mr._2)
(obj2 called_4 that_5)
(ncmod _ scenario_8 worst-case_7)
(det scenario_8 a_6)
(dobj called_4 scenario_8)
(ncsubj called_4 Barnum_3 _)
(conj _ called_4 But_1)

Figure 1: Dependency output in the form ofCCG

dependencies and grammatical relations

performance of theCCGparser with theRASPparser
(Briscoe et al., 2006).

3 Maximum Entropy Taggers

The taggers are based on Maximum Entropy tag-
ging methods (Ratnaparkhi, 1996), and can all be
trained on new annotated data, using eitherGIS or
BFGS training code.

ThePOStagger uses the standard set of grammat-
ical categories from the Penn Treebank and, as well
as being highly efficient, also has state-of-the-art ac-
curacy on unseen newspaper text: over 97% per-
word accuracy on Section 23 of the Penn Treebank
(Curran and Clark, 2003a). The chunker recognises
the standard set of grammatical “chunks”: NP, VP,
PP, ADJP, ADVP, and so on. It has been trained on
the CoNLL shared task data.

The named entity recogniser recognises the stan-
dard set of named entities in text: person, loca-
tion, organisation, date, time, monetary amount. It
has been trained on theMUC data. The named en-
tity recogniser contains many more features than the
other taggers; Curran and Clark (2003b) describes
the feature set.

Each tagger can be run as a “multi-tagger”, poten-
tially assigning more than one tag to a word. The
multi-tagger uses the forward-backward algorithm
to calculate a distribution over tags for each word in
the sentence, and a parameter determines how many
tags are assigned to each word.

4 Boxer

Boxer is a separate component which takes aCCG

derivation output by theC& C parser and generates a
semantic representation. Boxer implements a first-
order fragment of Discourse Representation Theory,



DRT (Kamp and Reyle, 1993), and is capable of
generating the box-like structures ofDRT known as
Discourse Representation Structures (DRSs). DRT is
a formal semantic theory backed up with a model
theory, and it demonstrates a large coverage of lin-
guistic phenomena. Boxer follows the formal the-
ory closely, introducing discourse referents for noun
phrases and events in the domain of aDRS, and their
properties in the conditions of aDRS.

One deviation with the standard theory is the
adoption of a Neo-Davidsonian analysis of events
and roles. Boxer also implements Van der Sandt’s
theory of presupposition projection treating proper
names and defininite descriptions as anaphoric ex-
pressions, by binding them to appropriate previously
introduced discourse referents, or accommodating
on a suitable level of discourse representation.

4.1 Discourse Representation Structures

DRSs are recursive data structures — eachDRScom-
prises a domain (a set of discourse referents) and a
set of conditions (possibly introducing newDRSs).
DRS-conditions are either basic or complex. The ba-
sic DRS-conditions supported by Boxer are: equal-
ity, stating that two discourse referents refer to the
same entity; one-place relations, expressing proper-
ties of discourse referents; two place relations, ex-
pressing binary relations between discourse refer-
ents; and names and time expressions. Complex
DRS-conditions are: negation of aDRS; disjunction
of two DRSs; implication (oneDRS implying an-
other); and propositional, relating a discourse ref-
erent to aDRS.

Nouns, verbs, adjectives and adverbs introduce
one-place relations, whose meaning is represented
by the corresponding lemma. Verb roles and prepo-
sitions introduce two-place relations.

4.2 Input and Output

The input for Boxer is a list ofCCGderivations deco-
rated with named entities,POStags, and lemmas for
nouns and verbs. By default, eachCCG derivation
produces oneDRS. However, it is possible for one
DRS to span severalCCG derivations; this enables
Boxer to deal with cross-sentential phenomena such
as pronouns and presupposition.

Boxer provides various output formats. The de-
fault output is aDRS in Prolog format, with dis-

______________________
| x0 x1 x2 x3 |
|______________________|
| named(x0,barnum,per) |
| named(x0,mr,ttl) |
| thing(x1) |
| worst-case(x2) |
| scenario(x2) |
| call(x3) |
| but(x3) |
| event(x3) |
| agent(x3,x0) |
| patient(x3,x1) |
| theme(x3,x2) |
|______________________|

Figure 2: Easy-to-read output format of Boxer

course referents represented as Prolog variables.
Other output options include: a flat structure, in
which the recursive structure of aDRS is unfolded by
labelling eachDRSandDRS-condition; an XML for-
mat; and an easy-to-read box-like structure as found
in textbooks and articles onDRT. Figure 2 shows the
easy-to-read output for the sentenceBut Mr. Barnum
called that a worst-case scenario.

The semantic representations can also be output
as first-order formulas. This is achieved using the
standard translation fromDRS to first-order logic
(Kamp and Reyle, 1993), and allows the output
to be pipelined into off-the-shelf theorem provers
or model builders for first-order logic, to perform
consistency or informativeness checking (Blackburn
and Bos, 2005).

5 Usage of the Tools

The taggers (and therefore the parser) can accept
many different input formats and produce many dif-
ferent output formats. These are described using a
“little language” similar to C printf format strings.
For example, the input format %w|%p \n indicates
that the program expects word (%w) andPOS tag
(%p) pairs as input, where the words andPOS tags
are separated by pipe characters, and each word-POS

tag pair is separated by a single space, and whole
sentences are separated by newlines (\n). Another
feature of the input/output is that other fields can be
read in which are not used in the tagging process,
and also form part of the output.

The C& C tools use a configuration management
system which allows the user to override all of the
default parameters for training and running the tag-
gers and parser. All of the tools can be used as stand-
alone components. Alternatively, a pipeline of the



tools is provided which supports two modes: local
file reading/writing or SOAP server mode.

6 Applications

We have developed an open-domainQA system built
around theC& C tools and Boxer (Ahn et al., 2005).
The parser is well suited to analysing large amounts
of text containing a potential answer, because of
its efficiency. The grammar is also well suited to
analysing questions, because ofCCG’s treatment of
long-range dependencies. However, since theCCG

parser is based on the Penn Treebank, which con-
tains few examples of questions, the parser trained
on CCGbank is a poor analyser of questions. Clark
et al. (2004) describes a porting method we have de-
veloped which exploits the lexicalized nature ofCCG

by relying on rapid manual annotation at the lexi-
cal category level. We have successfully applied this
method to questions.

The robustness and efficiency of the parser; its
ability to analyses questions; and the detailed out-
put provided by Boxer make it ideal for large-scale
open-domainQA.

7 Conclusion

Linguistically motivated NLP can now be used
for large-scale language processing applications.
The C& C tools plus Boxer are freely available
for research use and can be downloaded from
http://svn.ask.it.usyd.edu.au/trac/candc/wiki.
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