Quantum software: Phase-free ZX diagrams and CSS codes

Aleks Kissinger

February 16, 2024

Phase-free ZX-diagrams

...are made of spiders with $\alpha = 0$:

$$\vdots \qquad := \qquad |0...0\rangle\langle 0...0| + |1...1\rangle\langle 1...1|$$

$$\vdots \qquad := \qquad |+...+\rangle\langle +...+| + |-...-\rangle\langle -...-|$$

Phase-free ZX-diagrams

...are made of spiders with $\alpha = 0$:

$$\vdots \qquad \vdots \qquad := \qquad |0...0\rangle\langle 0...0| + |1...1\rangle\langle 1...1|$$

$$\vdots \qquad \vdots \qquad := \qquad |+...+\rangle\langle +...+| + |-...-\rangle\langle -...-|$$

$$= \qquad N \sum_{\bigoplus_i b_i = 0} |b_1...b_n\rangle\langle b_{n+1}...b_{n+m}|$$

Phase-free ZX-calculus

Simplification

- 1. Apply (sp) and (id) as much as possible.
- 2. Apply (sc) where
 - ▶ is **not** an input and
 - ▶ o is **not** an output.
- 3. Repeat as long as step 2 applies.

$$(sp)$$
 (id) (sc) \vdots \vdots $=$ $=$ \vdots $=$ \vdots

Simplification

- 1. Apply (sp) and (id) as much as possible.
- 2. Apply (sc) where
 - ▶ is not an input and
 - ▶ o is **not** an output.
- 3. Repeat as long as step 2 applies.

Each iteration **strictly** decreases:

$$(\# \text{ non-input } \circlearrowleft s) + (\# \text{ non-output } \circlearrowleft s)$$

Simplification

- 1. Apply (sp) and (id) as much as possible.
- 2. Apply (sc) where
 - ▶ is **not** an input and
 - ▶ o is **not** an output.
- 3. Repeat as long as step 2 applies.

Terminates with:

Unitaries

Unitary
$$\implies m = n, j = k = 0$$

Unitaries

Unitary
$$\implies m = n, j = k = 0$$

States

State
$$\implies m = 0, j = 0$$

States

$$\mathsf{State} \quad \Longrightarrow \quad m=0, \ j=0$$

States

State
$$\implies$$
 $m=0, j=0$

$$|\psi
angle = \sum_{v \in \mathcal{S}} |v
angle \;\; ext{where} \;\; \mathcal{S} = ext{span}\{v_1, \dots, v_k\} \subseteq \mathbb{F}_2^n$$

$$|{\rm GHZ}\rangle \ = \ |000\rangle + |111\rangle$$

$$\begin{array}{lcl} |\mathrm{GHZ}\rangle & = & |000\rangle + |111\rangle \\ & = & \sum_{v \in \mathcal{S}} |v\rangle \quad \text{where} \quad \mathcal{S} = \mathrm{span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\} \end{array}$$

$$|\mathrm{GHZ}
angle \ = \ |000
angle + |111
angle$$
 $= \sum_{v \in S} |v
angle \quad \text{where } S = \mathrm{span} \left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\}$
 $= \begin{pmatrix} 1\\1\\1 \end{pmatrix}$

$$|+++\rangle = \sum_{v \in \mathbb{F}_2^3} |v\rangle$$

$$\begin{array}{lcl} |+++\rangle & = & \displaystyle \sum_{v \in \mathbb{F}_2^3} |v\rangle \\ \\ & = & \displaystyle \sum_{v \in \mathcal{S}} |v\rangle & \text{where } \; \mathcal{S} = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\} \end{array}$$

$$|+++\rangle = \sum_{v \in \mathbb{F}_2^3} |v\rangle$$

$$= \sum_{v \in S} |v\rangle \quad \text{where} \quad S = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$

$$= \bigcirc \bigcirc \bigcirc \bigcirc$$

$$= \bigcirc \bigcirc \bigcirc$$

$$|+++\rangle = \sum_{v \in \mathbb{F}_2^3} |v\rangle$$

$$\begin{array}{lcl} |+++\rangle & = & \displaystyle \sum_{v \in \mathbb{F}_2^3} |v\rangle \\ \\ & = & \displaystyle \sum_{v \in S} |v\rangle & \text{where } S = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\} \end{array}$$

$$\begin{array}{lcl} |+++\rangle & = & \displaystyle \sum_{v \in \mathbb{F}_2^3} |v\rangle \\ \\ & = & \displaystyle \sum_{v \in S} |v\rangle \quad \text{where} \quad S = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\} \end{array}$$

$$|+++\rangle = \sum_{v \in \mathbb{F}_2^3} |v\rangle$$

$$= \sum_{v \in S} |v\rangle \quad \text{where} \quad S = \operatorname{span} \left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\}$$

$$= 0 \quad = 0 \quad = 0$$

Effects

Effect
$$\implies n = 0, k = 0$$

Effects

Effect
$$\implies$$
 $n = 0$, $k = 0$

Effects

Effect
$$\implies$$
 $n = 0$, $k = 0$

$$\langle \phi | = \sum_{v \in \mathcal{S}} \langle v | \; \; ext{where} \; \; \mathcal{S}^{\perp} = ext{span} \{ \mathit{w}_1, \ldots, \mathit{w}_j \} \subseteq \mathbb{F}_2^m$$

Or a second way to write states...

$$|\psi
angle = \sum_{v \in \mathcal{S}} |v
angle \;\; ext{where} \;\; \mathcal{S}^\perp = ext{span}\{ \mathit{w}_1, \ldots, \mathit{w}_j \} \subseteq \mathbb{F}_2^\mathit{n}$$

$$|\mathrm{GHZ}\rangle = |000\rangle + |111\rangle$$

$$\begin{split} |\mathrm{GHZ}\rangle &= & |000\rangle + |111\rangle \\ &= & \sum_{s,s} |v\rangle \quad \text{where} \quad S = \{v \mid v_1 \oplus v_2 = 0, v_2 \oplus v_3 = 0\} \end{split}$$

$$\begin{split} |\mathrm{GHZ}\rangle &=& |000\rangle + |111\rangle \\ &=& \sum_{v \in S} |v\rangle \quad \text{where} \quad S = \{v \mid v_1 \oplus v_2 = 0, v_2 \oplus v_3 = 0\} \\ &=& \sum_{v \in S} |v\rangle \quad \text{where} \quad S^\perp = \mathrm{span} \left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix} \right\} \end{split}$$

$$|\mathrm{GHZ}\rangle = |000\rangle + |111\rangle$$

$$= \sum_{v \in S} |v\rangle \quad \text{where} \quad S = \{v \mid v_1 \oplus v_2 = 0, v_2 \oplus v_3 = 0\}$$

$$= \sum_{v \in S} |v\rangle \quad \text{where} \quad S^{\perp} = \mathrm{span} \left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix} \right\}$$

Theorem

A state represented by a phase-free ZX-diagram is uniquely fixed by a subspace $S \subseteq \mathbb{F}_2^n$ (or equivalently $S^{\perp} \subseteq F_2^n$).

$$w_1$$
 \vdots $= \sum_{v \in S} |v\rangle$ where $S^{\perp} = \operatorname{span}\{w_1, \dots, w_j\}$

Stabiliser Theory

Theorem (FTST)

If S has k generators, then $\operatorname{Stab}(S)$ is a 2^{n-k} dimensional subspace of $(\mathbb{C}^2)^{\otimes n}$.

Stabiliser Theory

Theorem (FTST)

If S has k generators, then $\operatorname{Stab}(S)$ is a 2^{n-k} dimensional subspace of $(\mathbb{C}^2)^{\otimes n}$.

$$k=n \qquad \Longrightarrow \qquad \mathrm{Stab}(\mathcal{S}) = \left\{ \lambda |\psi\rangle \mid \lambda \in \mathbb{C} \right\}$$
 maximal $\qquad \qquad 1D \text{ subspace}$

CSS codes

Definition

For $S \subseteq \mathbb{F}_2^n$, $T \subseteq S^{\perp}$, a **CSS code** is a stabiliser group with generators:

$$ec{X_i} := igotimes_{q=1}^{\dim S} X^{(v_i)_q} \qquad \qquad ec{Z_j} := igotimes_{q=1}^{\dim T} Z^{(w_j)_q}$$

where $S = \operatorname{span}\{v_i\}$ and $T = \operatorname{span}\{w_i\}$.

A CSS code is maximal iff $T = S^{\perp}$, i.e. it has generators:

$$ec{X_i} := X^{(v_i)_1} \otimes \ldots \otimes X^{(v_i)_n}$$
 $ec{Z_j} := Z^{(w_j)_1} \otimes \ldots \otimes Z^{(w_j)_n}$

where $S = \operatorname{span}\{v_i\}$ and $S^{\perp} = \operatorname{span}\{w_j\}$.

The stabiliser group of $|GHZ\rangle$ is generated by:

$$X \otimes X \otimes X$$
 $Z \otimes Z \otimes I$ $I \otimes Z \otimes Z$

The stabiliser group of $|GHZ\rangle$ is generated by:

$$X \otimes X \otimes X$$
 $Z \otimes Z \otimes I$ $I \otimes Z \otimes Z$

This is a maximal CSS code, where:

$$S = \operatorname{span} \left\{ egin{pmatrix} 1 \ 1 \ 1 \end{pmatrix}
ight\} \qquad S^{\perp} = \operatorname{span} \left\{ egin{pmatrix} 1 \ 1 \ 0 \end{pmatrix}, egin{pmatrix} 0 \ 1 \ 1 \end{pmatrix}
ight\}$$

The stabiliser group of $|GHZ\rangle$ is generated by:

$$X \otimes X \otimes X$$
 $Z \otimes Z \otimes I$ $I \otimes Z \otimes Z$

This is a maximal CSS code, where:

$$S = \operatorname{span} \left\{ egin{pmatrix} 1 \ 1 \ 1 \end{pmatrix}
ight\} \qquad S^{\perp} = \operatorname{span} \left\{ egin{pmatrix} 1 \ 1 \ 0 \end{pmatrix}, egin{pmatrix} 0 \ 1 \ 1 \end{pmatrix}
ight\}$$

Theorem

The ZX-diagram associated with $S \subseteq \mathbb{F}_2^n$ is the unique stabiliser state of the maximal CSS code defined by (S, S^{\perp}) .

Proof

Using:

compute the X-stabilisers by "firing" each basis vector of S:

Proof

Using:

compute the X-stabilisers by "firing" each basis vector of S:

$$|\psi\rangle = (X^{(v_i)_1} \otimes \ldots \otimes X^{(v_i)_n})|\psi\rangle$$

Proof (cont'd)

Similarly, compute the Z-stabilisers from S^{\perp} :

Proof (cont'd)

Similarly, compute the Z-stabilisers from S^{\perp} :

$$|\psi\rangle = (Z^{(w_j)_1} \otimes \ldots \otimes Z^{(w_j)_n})|\psi\rangle$$

This gives dim $S+\dim S^{\perp}=n$ generators for n qubits, so $|\psi\rangle$ uniquely fixed by FTST.

Corollary

We can translate a maximal CSS code directly into a ZX-diagram in 2 ways.

Corollary

We can translate a maximal CSS code directly into a ZX-diagram in 2 ways.

For example, $\{X \otimes X \otimes X, Z \otimes Z \otimes I, I \otimes Z \otimes Z\}$ gives:

X-representation: $\{X \otimes X \otimes X\}$ \leadsto

Z-representation:
$$\{Z \otimes Z \otimes I, I \otimes Z \otimes Z\} \rightsquigarrow$$

Quantum error correction

...is done by encoding some **logical** qubits into a bigger space of **physical** qubits:

$$k \left\{ \begin{array}{c|c} \hline \vdots \\ \hline \end{array} \right\} n$$

Quantum error correction

...is done by encoding some **logical** qubits into a bigger space of **physical** qubits:

$$k \left\{ \begin{array}{c|c} \hline \vdots \\ \hline \end{array} \right\} n$$

E defines a **stabiliser code** when:

$$\operatorname{Im}\left(\begin{array}{c|c} \hline \vdots \\ \hline \end{array}\right) = \operatorname{Stab}(\mathcal{S})$$

where S is a stabiliser group with n-k generators.

Quantum error correction

We can detect errors without destroying the state by measuring stabilisers in S.

For CSS codes, 2 kinds of stabiliser measurements are relevant:

$$\mathcal{M}_{X...X} := \{\Pi^{(0)}_{X...X}, \Pi^{(1)}_{X...X}\}$$

$$\mathcal{M}_{Z...Z} := \{\Pi_{Z...Z}^{(0)}, \Pi_{Z...Z}^{(1)}\}$$

X measurements

$$\mathcal{M}_{X...X} \ = \ \left\{ \Pi^{(k)}_{X...X} \ := \ \frac{1}{2} (I + (-1)^k X \otimes \ldots \otimes X) \right\}$$

$$\Pi_{X...X}^{(0)} = \frac{1}{1}$$

$$\Pi_{X...X}^{(0)} = \frac{\Pi_{X...X}^{(1)}}{\vdots}$$

Z measurements

$$\mathcal{M}_{Z\dots Z} \ = \ \left\{ \Pi^{(k)}_{Z\dots Z} \ := \ \frac{1}{2} (I + (-1)^k Z \otimes \ldots \otimes Z) \right\}$$

$$\Pi_{Z...Z}^{(0)} = \frac{\Pi_{Z...Z}^{(1)}}{\vdots}$$

The GHZ code:

$$\mathcal{S} := \{ X \otimes X \otimes X, \quad Z \otimes Z \otimes I, \quad I \otimes Z \otimes Z \}$$

Then:

$$\operatorname{Im}\left(\begin{array}{c} \longleftarrow \end{array}\right) \ = \ \operatorname{span}\{|000\rangle, |111\rangle\} \ = \ \operatorname{Stab}(\mathcal{S})$$

The GHZ code:

$$\mathcal{S} := \{ X \otimes X \otimes X, \quad Z \otimes Z \otimes I, \quad I \otimes Z \otimes Z \}$$

Then:

$$\operatorname{Im}\left(--\left(-\right)\right) = \operatorname{span}\{|000\rangle, |111\rangle\} = \operatorname{Stab}(S)$$

So, we can encode states like this:

Applying Π_{ZZI}^{\pm} to an encoded state:

Hence:

$$\operatorname{Prob}_{ZZI}\left(k \mid \checkmark\psi \middle) = \delta_{0,k}$$

Applying Π_{771}^{\pm} to an encoded state with an error:

$$\psi = \psi = \delta_{1,k} \psi$$

Hence:

$$\operatorname{Prob}_{\mathsf{ZZI}}\left(k \mid \checkmark \right) = \delta_{1,k}$$

Note:

$$\operatorname{Im}\left(\begin{array}{c|c} \hline \vdots \\ \hline \end{array}\right) = \operatorname{Stab}(\mathcal{S})$$

only fixes the **image** of E, not E itself.

Note:

$$\operatorname{Im}\left(\begin{array}{c|c} \hline \vdots \\ \hline \end{array}\right) = \operatorname{Stab}(\mathcal{S})$$

only fixes the **image** of *E*, not *E* itself.

For example, the following is also a GHZ encoder:

To fix E, we should fix 2k more **logical operators** by "pushing" Pauli X and Z ops through the encoder:

Equivalently, we fix 2k more stabilisers for the n+k qubit state $|E\rangle := (I \otimes E)|\cup\rangle$:

Equivalently, we fix 2k more stabilisers for the n+k qubit state $|E\rangle := (I \otimes E)|\cup\rangle$:

$$(n-k)+2k=n+k$$
 stabilisers for $|E\rangle$

The GHZ code has stabiliers and logical operators:

$$\vec{Z}_1 = Z_1 Z_2$$
 $\vec{Z}_2 = Z_2 Z_3$
 $\vec{\mathcal{X}} = X_1 X_2 X_3$ $\vec{\mathcal{Z}} = Z_1$

Stabiliers for $|E\rangle$:

$$\vec{X}_1' = X_1 X_2 X_3$$
 $\vec{Z}_1' = Z_1 Z_2$ $\vec{Z}_2' = Z_2 Z_3$ $\vec{\mathcal{X}}' = X_0 X_1 X_2 X_3$ $\vec{\mathcal{Z}}' = Z_0 Z_1$

X-representation:

Z-representation:

The surface code

The surface code

...is a 2D lattice of $d \times e$ qubits:

$$\vec{X}_1 := X_2 X_3 X_5 X_6 \quad \vec{X}_2 := X_4 X_5 X_7 X_8$$
 $\vec{Z}_1 := Z_1 Z_2 Z_4 Z_5 \quad \vec{Z}_2 := Z_5 Z_6 Z_8 Z_9$

$$(d-1)(e-1)$$
 stabilisers

The surface code

...is a 2D lattice of $d \times e$ qubits:

$$\vec{X}_1 := X_2 X_3 X_5 X_6$$
 $\vec{X}_2 := X_4 X_5 X_7 X_8$
 $\vec{X}_3 := X_1 X_4$ $\vec{X}_4 := X_6 X_9$
 $\vec{Z}_1 := Z_1 Z_2 Z_4 Z_5$ $\vec{Z}_2 := Z_5 Z_6 Z_8 Z_9$
 $\vec{Z}_3 := Z_2 Z_3$ $\vec{Z}_4 := Z_7 Z_8$

$$(d-1)(e-1) + d - 1 + e - 1 = de - 1$$
 stabilisers

Lattice surgery

In the surface code, we can implement physical operations that behave like **SPLIT** and **MERGE** on logical qubits:

This lets us do entangling operations, e.g. CNOT:

This lets us do entangling operations, e.g. CNOT:

Merge

$$k := j_1 \oplus j_2$$

Merge

This all used the X-representation. Flip to the Z-representation to get the colour-reversed split and merge.

This all used the X-representation. Flip to the Z-representation to get the colour-reversed split and merge.

Similar tricks implement:

- Entangled measurements
- Magic state injection
- universal FTQC

This all used the X-representation. Flip to the Z-representation to get the colour-reversed split and merge.

Similar tricks implement:

- Entangled measurements
- Magic state injection
- universal FTQC

Other CSS codes like colour codes translate to ZX very similarly. L.S. should pretty much work the same way.