Quantum software:
Phase-free ZX diagrams and CSS codes

Aleks Kissinger

February 16, 2024

Phase-free ZX-diagrams

...are made of spiders with o = 0:

)3(= [0..0)(0...0] + [1...1)(1...1]

= e (e =) (e

Phase-free ZX-diagrams

...are made of spiders with o = 0:

)3(= [0..0)(0...0] + [1...1)(1...1]
)(=) e =) (]

= N > |bibn)(bri1.boym|
@®ibj=0

Phase-free ZX-calculus

(s¢)

Simplification

1. Apply (sp) and (id) as much as possible.

2. Apply (sc) where
» O is not an input and
> O is not an output.

3. Repeat as long as step 2 applies.

(id)

(s¢)

Simplification

1. Apply (sp) and (id) as much as possible.
2. Apply (sc) where

» O is not an input and
> O is not an output.

3. Repeat as long as step 2 applies.

Each iteration strictly decreases:

(# non-input Js) + (# non-output @'s)

Simplification

1. Apply (sp) and (id) as much as possible.
2. Apply (sc) where

» O is not an input and

> O is not an output.

3. Repeat as long as step 2 applies.

Terminates with:

Unitaries

Unitary

=

Unitaries

Unitary — m=n, j=k=0

\/
/\

o
1
2

3

neoE

zo D x2 O x3

3
0bx1Dr2 D
X
ro D x1 O a3

T2 D x3

States

State =— m=0, j=0

States

State =— m=0, j=0

States

State — m=0, j=0

U1

[v) = Z |v) where S =span{vq,...,v} CFj

veSs

IGHZ) = |000) + |111)

|GHZ)

000) + [111)

Z |v) where S =span
ves

IGHZ) = |000) + |111)

1
= Z |v) where S = span{ (1) }
ves 1

[+++)

> Iv)

VE]Fg

Z |lv) where S = span
veSs

[+++)

> Iv)

VE]Fg

Z |lv) where S = span

veSs

[+++)

> Iv)

VE]Fg

Z |lv) where S = span
veSs

[+++)

> Iv)

VE]Fg

Z lv) where S =span

veSs

[+++)

> Iv)

VE]Fg

Z lv) where S =span

veSs

o—o0—
- 0—o
o—o—

Effects

Effect =— n=0, k=0

Effects

Effect

—

Effects

Effecc =— n=0, k

(¢| = Z<v| where S+ = span{w;,

veS

...,wj} CFY

Or a second way to write states...

w1

wj

W) = Z |v> where St = span{W1, ceey Wj} C

veS

IGHZ) = |000) + |111)

IGHZ) = |000) + |111)

= Z]v) where S={v|vi®w=0v& v =0}
ves

IGHZ) = |000) + |111)

= Z]v) where S={v|vi®w=0v& v =0}
ves

1 0
= Z |v) where St = span{ (1) , (1) }
ves 0 1

IGHZ) = |000) + |111)

= Z]v) where S={v|vi®w=0v& v =0}
ves

1 0
— Z lv) where St = span{ (1) 1
veS 0 1

Theorem
A state represented by a phase-free ZX-diagram is uniquely fixed

by a subspace S C 3 (or equivalently S* C F}).

U1
: o= Z|v> where S = span{vi,..., v}
Uk ves
w1
= Z\v> where ST = span{wi,...,w;}
Wi ves

Stabiliser Theory

Theorem (FTST)

If S has k generators, then Stab(S) is a 2"~% dimensional
subspace of (C2)®".

Stabiliser Theory

Theorem (FTST)

If S has k generators, then Stab(S) is a 2"~% dimensional
subspace of (C2)®".

k=n — Stab(S) = {Aly) | A € C}

maximal 1D subspace

CSS codes

Definition
For SCF4, T C St, a CSS code is a stabiliser group with
generators:
dimS dim T
X = ® X (Vi)q Z = ® ZWja
g=1 qg=1

where S = span{v;} and T = span{w;}.

A CSS code is maximal iff T = S+, i.e. it has generators:
X; =XV g, @xW Zi=2ZWh .. g zMn

where S = span{v;} and St = span{w;}.

Example
The stabiliser group of |GHZ) is generated by:

X®X®X Z@Z&I I®Z®Z

Example
The stabiliser group of |GHZ) is generated by:

XXX Z@Z&I I®Z®Z

This is a maximal CSS code, where:

1 1
S = span 1 St = span 1],
1 0

Example
The stabiliser group of |GHZ) is generated by:

XXX Z@Z&I I®Z®Z

This is a maximal CSS code, where:

1 1 0
S = span 1 St = span 11,11
1 0 1

< =

Theorem
The ZX-diagram associated with S C IF5 is the unique stabiliser
state of the maximal CSS code defined by (S, S%).

Proof

Using:

¢

compute the X-stabilisers by “firing” each basis vector of S:

Proof

Using:

¢

compute the X-stabilisers by “firing” each basis vector of S:

U1
—_ Uj =
Vk f

) = (X0 XU [g)

Proof (cont'd)

Similarly, compute the Z-stabilisers from S+

w1

wk'

Proof (cont'd)

Similarly, compute the Z-stabilisers from S+
wy
—_ wj

wk'

This gives dim S + dim St = n generators for n qubits, so |¢)
uniquely fixed by FTST. O

Corollary

We can translate a maximal CSS code directly into a ZX-diagram
in 2 ways.

Corollary

We can translate a maximal CSS code directly into a ZX-diagram
in 2 ways.

For example, (X @ X @ X, Z®@Z® 1,1 ® Z® Z} gives:

X-representation: {XoX®X} ~

Z-representation: {Z®Z®/,/10Zx7Z} ~

<
=

Quantum error correction

...is done by encoding some logical qubits into a bigger space of

physical qubits:
k{:E ; }n

Quantum error correction

...is done by encoding some logical qubits into a bigger space of

physical qubits:
k{:E ; }n

E defines a stabiliser code when:

Tm (2) — Stab(S)

where S is a stabiliser group with n — k generators.

Quantum error correction

We can detect errors without destroying the state by measuring
stabilisers in S.

For CSS codes, 2 kinds of stabiliser measurements are relevant:

Mx. .x = {ng?.)..w I'l&l_)_.x}

Mz .z:= {ng).)..E n(ZlA)..Z}

X measurements

Mx. x =

0
ng(.)..x =

/ measurements

Mz 7 =

Example
The GHZ code:

S={XeXoX, ZZ®l, I18Z®Z}

Im<{> = span{|000), [111)} = Stab(S)

Then:

Example
The GHZ code:

S={XeXeoX, ZeZxl, 19ZxZ}

Im(%) = span{|000),[111)} = Stab(S)

So, we can encode states like this:

SAS

Then:

Applying I'IfZ, to an encoded state:

Hence:
Probyz <k ’) = So.x

Applying I'I%Z, to an encoded state with an error:

_ :4{ @ = 51,k<—€ S @
Probzz,<k ‘ < @ > = 01k

Logical operators

Note:

Im(EE

only fixes the image of E, not

:) = Stab(S)

E itself.

Logical operators

Note:

Im(EE

only fixes the image of E, not

For example, the following is al

> = Stab(S)
E itself.

so a GHZ encoder:

Logical operators

To fix E, we should fix 2k more logical operators by “pushing”
Pauli X and Z ops through the encoder:

—@HEe|: = T |B|:|&|:

|
[o]

Logical operators

Equivalently, we fix 2k more stabilisers for the n + k qubit state
|E) = (I ® E)|U):

Logical operators

Equivalently, we fix 2k more stabilisers for the n + k qubit state
|E) = (I ® E)|U):

(n — k) 4+ 2k = n + k stabilisers for |E)

Example
The GHZ code has stabiliers and logical operators:

=212, Zr= 2,74

X=X XXs Z=2

o
ol -

Stabiliers for |E):

Xl =X X0Xs Zl=217Zy Zb=12075

X = XX X0Xs 2 =207

X-representation:

]

w o = O
$
=)

w o

Z-representation:

- 0 0 1
Z] ; ~ 2
Z

2 3 3

The surface code

The surface code

...is a 2D lattice of d x e qubits:

)_(1 = X2X3X5X6)?2 = X4X5X7X8
Zl = 21222425 22 = Z5262329

(d — 1)(e — 1) stabilisers

The surface code

...is a 2D lattice of d x e qubits:

Xi = XoXaXs X Xo := XaXs X7 Xs

Xz = X1 Xa Xy := XeXo
21 = 21202475 2o := ZsZsZs 7o
Zy = 2275 Zy = 7774

(d—1)(e—1)+d—1+e—1=de—1 stabilisers

2 logical operators

[m]

DA 39/50

Lattice surgery

In the surface code, we can implement physical operations that
behave like SPLIT and MERGE on logical qubits:

de
— Faxae de SPLIT

&

de de
- ——
de MERGEk de - E2d><e

This lets us do entangling operations, e.g. CNOT:

de de de
%’; def
| Baxze de SPLIT de de = de de
7 dxe
MERGE MERGE
de de de de

This lets us do entangling operations, e.g. CNOT:

de de de
—F Eaxe
| Baxze de SPLIT de de de de
H— = Eaxe
MERGE MERGE
de de de de
Faes % Ea %
deC dee
e.c
de de
= e = e
Edee de E2d><e de
I 2.

Split

Split

Split

Split

Merge

k:=j®j

Merge

Final notes

Final notes

This all used the X-representation. Flip to the Z-representation to
get the colour-reversed split and merge.

Final notes

This all used the X-representation. Flip to the Z-representation to
get the colour-reversed split and merge.

Similar tricks implement:
» Entangled measurements
> Magic state injection
» — universal FTQC

Final notes

This all used the X-representation. Flip to the Z-representation to
get the colour-reversed split and merge.

Similar tricks implement:
» Entangled measurements
> Magic state injection
» — universal FTQC

Other CSS codes like colour codes translate to ZX very similarly.
L.S. should pretty much work the same way.

