
Towards Grouping Constructs for Semistructured Data

François Bry, Dan Olteanu, Sebastian Schaffert
�

Institute for Computer Science, University of Munich
Oettingenstrasse 67, D-80538 München, Germany

http://www.pms.informatik.uni-muenchen.de

Abstract

Markup languages for semistructured data like XML are
of growing importance as means for data exchange and
storage. In this paper we propose an enhancement for the
semistructured data model that allows to express more se-
mantics. A data model is proposed and the implications on
pattern matching are investigated.

1. Introduction

Languages for semistructured data (SSD) like XML have
by now gained widespread acceptance as a data exchange
format. Also growing is the importance of the SSD data
model for database management. Query languages like
XQuery [21] and its predecessors QUILT [7] and XQL [13]
are visible signs of this development.

In this paper, we suggest an enhancement called group-
ing constructs to the SSD data model. This enhancement
allows to establish explicit semantic relationships between
data items in semistructured databases. Usually these rela-
tionships are given either implicitly through the meaning of
element names or are implemented in the application soft-
ware processing the data. A declarative localization lan-
guage (e.g. XPath [18]) that not only copes with grouping
constructs but also uses them for a more efficient localiza-
tion and thus querying is further described.

This paper is organized as follows: Section 2 shows on
an introductory example the deficiencies of ordinary SSD
data models and how they can be overcome with group-
ing constructs. Section 3 introduces the grouping facets
which make up the grouping constructs. Section 4 gives an
overview of a formalism for grouping constructs. Sections
5 and 6 will deal with matching and its results in a group-
ing context. Finally, current investigations on the subjects,
plans and visions for the future as well as related work are
briefly presented.

�
Contact: schaffer@informatik.uni-muenchen.de

2. Motivation

Consider the following example of a curriculum at the
University of Munich:

In the first 4 terms, some courses are optional while oth-
ers are required. Thus there are and and or connections
between courses.

Terms Courses
Comp. Sc. Mathematics Projects

1 CS I Algebra I
and
Analysis I

2 CS II Algebra II
and
Hardware Basics

3 CS III Graph Theory Programming
and or
App. Analysis Systems

4 CS IV Stochastics or
and or Hardware
Advanced Numerical or
Algorithms Mathematics Logics

While this table reminds of a standard database item like
e.g. a (non-first normal form) relation, the and and or con-
nections show a very different semantics. Obviously, a data
model is needed with which grouping constructs like the
and and or connectives can be expressed and used during
localization and data retrieval in general. Note that object
data not meta-data are grouped. In the following we will
see that other grouping constructs are also desirable.

Let us first consider a similar example at a more abstract
level:

Imagine that you want to store data the semantics of
which is � and

���
or ��� . In a relational database model,

this would be achieved by transforming this to its conjunc-
tive normal form

� � and
� � or

� � and ��� and then storing
each of the conjuncts

� �
	 � � and
� �
	 ��� in a relation � (infor-

mally, the and is between the columns, or attributes, while

the or is between the rows, or tuples, of the table). This
would result in the relation ��� � � �
	 � � 	 � � 	 ����� .

This representation has two drawbacks:

� redundancy: The information about � is stored several
times. This is inefficient in both, space and computa-
tion, and error prone for updates.

� information loss: The fact that
�

and � are and con-
nected to the common item � might be important from
a semantics viewpoint. This information has to be re-
computed (i.e. the conversion to the conjunctive nor-
mal form has to be reversed).

With the SSD data model things are even worse: While
the relational model at least has the connections and and
or built-in (i.e. the and connections between the columns
and the or connections between the rows), in the SSD data
model it is not possible to express such information in an
application independent manner.

As semi-structured data, the previous course of studies
example could be expressed as follows (an XML syntax is
used here to ease the understanding for the reader; any other
SSD syntax would be possible).� c o u r s e o f s t u d i e s �

. . .� t e rm �� number � 4 � /number �� c o m p u t e r s c i e n c e s �� c o u r s e � CS IV � / c o u r s e �� c o u r s e �
Advanced A l g o r i t h m s� / c o u r s e �� / c o m p u t e r s c i e n c e s �� m a t h e m a t i c s �� c o u r s e � S t o c h a s t i c � / c o u r s e �� c o u r s e �
Numer ica l Mathemat i c s� / c o u r s e �� / m a t h e m a t i c s �� s e m i n a r s �� c o u r s e �
Programming Course� / c o u r s e �� c o u r s e �
System Course� / c o u r s e �

. . .� / s e m i n a r s �� / t e rm �� / c o u r s e o f s t u d i e s �
In this excerpt, some information is missing: It is not ex-

pressed which courses are optional and which are required.

A common solution would be to provide this information in
an application dependent query interface.

However, this approach would not be portable since ev-
ery application would have its own data format. This would
be unfortunate because it is the idea of SSD to be applica-
tion independent. Note that such semantic groupings occur
frequently in data exchange (e.g. in e-commerce catalogs,
bioinformatics databases [9],etc.).

Our proposal is to add general constructs to the SSD data
model so as to allow the grouping of elements according to
certain properties (“grouping facets”), thus trying to over-
come the above mentioned deficiencies of the relational and
the standard semi-structured model.

With grouping facets the introductory example can be
represented as follows. Again, the XML syntax has been
retained. Also note that grouping can be expressed through
other constructs than through elements.� c o u r s e o f s t u d i e s �

. . .� t e rm �� number � 4 � /number �� c o m p u t e r s c i e n c e s �� AND�� c o u r s e � CS IV � / c o u r s e �� c o u r s e �
Advanced A l g o r i t h m s� / c o u r s e �� /AND�� / c o m p u t e r s c i e n c e s �� m a t h e m a t i c s �� OR�� c o u r s e � S t o c h a s t i c � / c o u r s e �� c o u r s e �
Numer ica l Mathemat i c s� / c o u r s e �� /OR�� / m a t h e m a t i c s �� s e m i n a r s �� OR�� c o u r s e �
Programming Course� / c o u r s e �� c o u r s e �
System Course� / c o u r s e �

. . .� /OR�� / s e m i n a r s �� / t e rm �� / c o u r s e o f s t u d i e s �
In the next section, grouping is investigated systemati-

cally and other grouping facets than and and or are sug-
gested.

After that, a matching technique for localization in a con-
text with grouping constructs is discussed.

3. Grouping Facets

Since our extension groups data items and adds addi-
tional information to the already-existing structure, it is
called grouping constructs. The individual kind of group-
ing is called grouping facets. The following grouping
facets are suggested:

� connector: for grouping items with the connectors
AND, OR and XOR (the connector facet has one of
the properties “AND”, “OR” and “XOR”).

� order: for specifying whether items are ordered or not
(properties “ordered”, “unordered”)

� repetition: for specifying whether items of the same
type may be repeated or not (properties “repetition al-
lowed” and “repetition not allowed”).

� selection: for allowing a query to select/match a cer-
tain number of the items (property “n to m”)

� exclusion: for excluding certain items (property “ex-
cluded”)

� depth: for allowing a pattern to span several levels in a
matched tree (property “n to m”).1

From the facets presented above, the first 4 are sibling
relationships and the last 2 are parent-child relationships.

Grouping facets can be of importance in three areas:
database modeling, query patterns/schemas and answers to
a query.

Not all of the mentioned grouping facets fit equally well
to databases and to patterns/schemas. While e.g. the con-
nector facet may be of relevance in both databases and
patterns/schemas, the exclusion facet makes sense for pat-
terns/schemas only.

In this paper we deliberately impose the following re-
strictions on grouping facets:

� only one grouping facet can be specified for a group of
nodes

� the specified grouping facet always applies to all im-
mediate children

� the data model is currently limited to trees2

1Allowing infinity as value for m allows to express the classical quan-
tifiers “*”, “+” and “?” as “n to m” facets

2Extensions to DAGs and forests do not pose principal problems

The rationale for these restrictions is the focus on the
novel issue. An extension is possible (and desirable) in the
future.

Ontologies([11],[5],[15]) have constructs similar to
these grouping constructs, however they use them primar-
ily for structuring meta-data.

Also schemas for XML (XML-Data [16], DDML [17],
XML-Schema [20] etc.), have constructs similar to some
of the above mentioned grouping constructs, but not all of
them. Note that these constructs are only used for group-
ing in a schema, not in the data. Using grouping constructs
in queries and answers is not considered in these specifica-
tions.

XML-Schema grouping constructs are less expressive
than the present proposal. With XML-Schema one can rep-
resent only the connector, order, repetition and exclusion
facets. The AND connector and ordering can be repre-
sented in XML-Schema as a sequence of children declara-
tion for the content model of the parent. The XOR connec-
tor reminds of the choice group element or of the enumer-
ation facet from XML-Schema. The OR connector can-
not be completely modeled using XML-Schema constructs
(part of it can be achieved uing a combination between
the choice group element and the minOccurs and maxOc-
curs facets). The unordering can be represented in XML-
Schema by the all group element. The repetition and ex-
clusion facets are covered by the minOccurs and maxOc-
curs facets.

4. Data Model: Trees with Grouping Facets

In this section, a data model of data trees with grouping
facets is introduced.

Let ��������� denote a set of nodes, 	
���
�����������������
��������� a set of edges and ����������� a set of node labels.
Furthermore, let ��������� �! � denote the set of all (finite)
repetition free lists with elements from

.

4.1. Data Trees (DTs)

The semistructured data model considered is based upon
node-labeled trees, hence (slightly) different from other ap-
proaches such as UnQL [2] and OEM [4] or ACeDB [6].

A tree T = (��������� 	 	����
���) is a rooted DAG (directed
acyclic graph), where every node "$#%��������� there is a
unique path from the root root to " .

Definition 4.1 (elementary data tree)
An elementary data tree DT, with set of nodes ���&����� , set
of edges 	
���
��� and root root, is represented by the tuple
(���&����� , name, children, root), where:

� " ��')(+* ���������-,.�/�������0� is a function mapping
each node to its label

� ���������	� (" * ��������� , ��
0�
� � � ��������� � is a function
mapping each node " # ��������� to its children (thus
children are ordered)

Our model considers by default an elementary data tree
as unordered tree. The ordering can be explicitly stated us-
ing the order facet.

Trees with ordered children will be written as� ����� 	
���
��	 ��� � , meaning a tree with root node A and sub-
trees

��� 	��
��� 	 ��� in the given order. Trees with unordered
children will be written

� ����� 	��
����	 ��� � denoting the same
tree, but with the subtrees

��� 	
���
��	 ��� in any order.
Elementary data trees are extended to enriched data

trees by adding grouping facets as follows:

Definition 4.2 (data tree with grouping facets)
Given a set G of grouping facets as defined in Section
3, a data tree with grouping facets is defined as a tuple
(��������� ,name,children,root,grouping), where:

� (���&����� , name, children, root) is an elementary data
tree

��� ����� ��� " � * ���&����� , ��������� � G � is a function map-
ping each node to a set of corresponding grouping
facets.

Note that Definition 4.2 allows grouping facets for all the
children of a node, following an assumption made at the end
of Section 3.

The meaning of a data tree with grouping can be ex-
pressed as a set of elementary data trees. For example, the
data tree with OR-grouping expresses the set of elementary
data trees consisting of all combinations between children
(see Definition 4.3 below). By contrast, a data tree with
AND-grouping expresses the set of elementary data trees
represented only by the elementary data tree with all chil-
dren. A possible comparison between data trees with group-
ing facets is addressed in Section 6.

4.2. Semantics of DTs with grouping facets

The semantics of a data tree with grouping facets is de-
fined in terms of elementary data trees (without grouping).
Thus, data trees with grouping facets can be seen as “fac-
torization” of several elementary data trees.

Definition 4.3 (Interpretation of grouping facets)
Let DT be a data tree with grouping facets. A given
node ! # ��������� ��"$# � with a grouping facet % #� ����� ��� " � � ! � and children

# � 	��
����	 # � is interpreted as its
correspondent forest of data trees & � !(' � with root node !
and without % as defined in table 1.

enriched subtree !(' interpreted as the elementary
subtrees

& � ! � � � �
N() �

& � ! �)# � 	
������	 # � � � * � ! �)#,+� 	��
����	 #,+� �.- #,+/ #
& ��# / � 	
0�1 � 1 " �& � ! � � � & � ! � � �

& � ! �
# � 	��
����	 # � � � * � ! �)#3254 �76 	����
� 	 #3254 �86 � -9 � (� ' �;: � :<�<� "��8= � 0 	��
��� 	 " � �
& � !?> � � � & � ! � � �
& � !?> ��#@� 	��
��� 	 #A� � � & � ! �
#B� 	
���
��	 #3� � �
& � !DC3EGF � � � & � ! � � �& � ! C3EGF �)# � 	
������	 # � � � & � ! �
# � 	
���
��	 # � � �
& � !DHBI � � � & � ! � � �
& � !DHBI ��# � 	��
��� 	 # � � � * � & � ! ��J � 	
���
��	 JLK � � -�MJ � 	����
� 	 JLK � ��
# � 	����
� 	 # � � 	�0�1ONP1 " �& � !DQ HBI � � � & � ! � � �
& � !DQ HBI �)#B� 	����
� 	 #3� � � * � & � ! �M# / � �R- 0�1 � 1 " �
& � !?S7TVU
W � � � & � ! � � �
& � !?S7TVU
W �)#B� 	
������	 #3� � � & � ! �)#B� 	����
� 	 #3� � �& � !DX � S7TVU
W � � � & � ! � � �
& � !DX � S7TVU
W �)# � 	
������	 # � � � & � ! �
# � 	
���
��	 # � � �
& � !DTZY\[�Y7]V^ � � � & � ! � � �& � !DTZY\[�Y7]V^ �)#B� 	
���
��	 #3� � � * � & � ! �M#,+� 	����
� 	 #�+� � �_- #�+/ ��)# / 	��
����	 # / � 	 - #,+/ - � N / 	�0`1

� 1 " 	ZN /LaOb �
& � ! / ^�S3c � � � & � ! � � �& � ! / ^�S3c ��# � 	��
��� 	 # � � � * � & � ! ��J � 	
���
��	 JLK � � -�MJ � 	����
� 	 JLK � ��
# � 	����
� 	 # � � 	 � 1`Nd1fe �0�1 � 1fe$1 "
& � !?Y<g�h\i X UjY � � � & � ! � � �
& � !?Y<g�h\i X UjY �)#B� 	
���
� #A� � � * � & � ! ��JL� 	
���
��	 J K � � -�MJ � 	����
� 	 JLK �Lk �M# � 	����
��	 # � � �l 	VN amb �

Table 1. Interpretation of grouping facets

& applied recursively to all nodes from the data tree
"$#

beginning with the root node generates a forest of elemen-
tary data trees. This forest is called the interpretation of"$#

, written & ��"$# � .
In table 1 n denotes a void grouping facet. A node with an

n grouping facet can be viewed as a node without grouping
facets.

The number of possible interpretations of a data tree
"$#

grows exponentially with the number of grouping facets in
the tree, because it is necessary to combine each of the
grouping facets of the parent node with the ones of the chil-
dren. This shows the expressive power of grouping facets:
It is possible to express informations that would usually re-
quire a large number of elementary data trees in one single

data tree with grouping facets.

Example 4.1
A simple data tree with grouping facets and its set of ele-
mentary presentations is shown in the figure. Each of the
elementary data trees is a model for the enriched tree.

A

B

D E

C

D

A

B C

A

B C

E

A

C

D

A

C

E

A

B

XOR

OR

However, the localization process for databases and pat-
terns based on data trees with grouping facets should not
consist in a systematic generation of the elementary data
trees representing the patterns and databases. This would
be inefficient and would have the drawbacks mentioned at
the end of Section 1. Rather, a matching at the semantic
level is more appropriate and desirable. Such a matching is
described below.

5. Matching trees with grouping facets

An important issue for our model is to allow querying
with these richer semantics, considering both patterns and
databases as data trees with grouping facets. We investigate
the relationship between data trees with grouping facets in
order to decide whether or not a given pattern matches with
a given database, and if it matches, what is the result.

5.1. Patterns and Databases

The difference between a pattern and a database comes
from the usage and from the fact that a pattern may have
variables (discussed in Section 7). While a database will
usually consist of one or more data trees that contain some
(useful) data, a pattern is used as a query to such a database
that either matches with the database (and possibly binds
variables) or not. Hence a pattern is a declarative way to
pose a (localization) query.

For introducing the notion of matching between two data
trees we use a simulation-based approach, as defined in the
following subsection.

5.2. Simulation for DTs

A relationship between two graphs may be expressed in
terms of a relation, called simulation[1]. It is worth not-

ing its usage, in addition to querying, for classifying all ob-
jects (nodes) from a database wrt to a schema [1], or for
establishing whether there is a subsumption between two
different schemas [3]. In the followings the notion of sim-
ulation is adjusted to our needs. node-labeled trees, instead
of edge-labeled graphs, are considered without losing the
power of the notion. We define matching between two data
trees as a simulation between the trees. Furthermore, we
extend this matching in order to cope with grouping facets.
Here we consider a matching approach between unordered
trees. The order feature can be achieved by adding an or-
dering relation on the tree nodes, as in [19].

Definition 5.1 (elementary simulation)
Given two elementary data trees

"_# �
and

"$# � , a binary
relation

� �-��������� ��"_#B� �&����������� ��"_# � � is an elemen-
tary simulation on

"$# �
and

"$# � if it satisfies
� if " � � " � , then name(" �) = name(" �)
��� " � 	 " + � #���������� ��"$#B� � � " � # ��������� ��"$# � �� " � � " ��� " + � # �
� �<��� � (" � " � ���	 " +� #���������� ��"$# � �� " + � � " +� � " +� # �����<��� � (" � " � � � �
If
�

is a simulation on two elementary data trees
"$# �

and
"$# � , then we shall write

"$# � �M
�

� "$# � .
If the roots � � and � � of

"$#B�
and

"$# � are in the simula-
tion (� � � � �), then the simulation is called rooted.

Definition 5.1 states a simple property of preserving the
structure of

"_#B�
in

"$# � , although the nodes in
"$# � might

have additional child nodes that don’t have correspondences
in

"$#B�
.

The extension of the simulation for elementary data trees
will also have to take into consideration the interpretations
for the grouping facets.

5.3. Naı̈ve Matching with Grouping

For data trees with grouping, we will first present a sim-
ulation approach that seems straightforward for the task. In
Section 6.2, we will see that this approach needs further re-
finement.

Definition 5.2 (grouping simulation)
Given two enriched data trees

"_# �
and

"$# � with group-
ing facets, an elementary relation

� � ! ��� (�� ��"$# � � �
! ��� (�� ��"$# � � is a grouping simulation on

"_#B�
and

"$# �
if it satisfies
	�� � #��@' ��"$#B� � 	�� � #��@' ��"_# � � � � � �

�
�� � � �"$#B� �M
�
�� "$# � �

If
�

is a grouping simulation on
"$# �

and
"$# � with

grouping, then we shall write
"$# � �

�

�� "$# � instead of"$#B� �M
�
�� "$# � .

The enhanced simulation defined above maps not only
nodes from

"_#B�
to nodes from

"$# � , but also considers
the possible grouping facets of

"$# �
and

"$# � , making use
of the interpretations of the facets. Informally speaking, it
states that, in order to have a matching between two nodes
from

"$# �
and

"$# � , at least one of the interpretations of
the grouping facets attached to the first node should match
to at least one of the interpretations of the grouping facets
attached to the second. Although this may be refined with
techniques similar to branch-and-bound search, the com-
plexity is still exponential in both space and time. Therefore
we suggest an enhancement in Section 6.2. For a better un-
derstanding, refer to Example 5.1, where the pattern and the
database are represented as data trees with grouping facets.

Example 5.1
Following Definition 5.2, we will use two data trees

"$#��
and

"_# � to demonstrate the grouping simulation.

A A

D E

CB F

DT 2

OR

XOR

XOR

DT 1

CB D

The interpretations of the two data trees are given in the
next figure. Of the 11 interpretations of

"$# � , only the first
two and the last 4 are given in this figure.

AA A

Interpretations DT1

CB D

1 2 3

A A

B FC

D

C

E

A A A A

B C

D

C

E

F

Interpretations DT2

B F

1 2

10 1198

A grouping simulation on
"$# �

and
"$# � corresponds to

an elementary simulation on one interpretation of
"$#L�

and

one interpretation of
"$# � . In this example, there are three

elementary simulations on interpretations of
"$# �

and
"$# � ,� 0 	�� � , ��� 	�� � and

��� 	
0 b � . Note that the semantics of the
XOR facet forbids elementary simulations such as

� 0 	
0 � .
Using the elementary simulations

� 0 	�� � , ��� 	�� � , and��� 	�0 b � one can construct the following results of the match-
ing of

"$# �
and

"$# � . Note that a combined presentation
of these results using grouping constructs, as shown in the
figure, would be preferable. An improved matching tech-
nique for efficiently computing such a combined result is
discussed in the next section.

A A

C

A

B B

A

C C

D E D E

Result Combined

XOR

XOR

6. Answer semantics

In order to allow querying the data, it is necessary to gen-
erate answers containing the fragments from the database
that match with the pattern. Recall Example 5.1, where the
result of matching is computed with respect to the simula-
tion between pattern and database.

This section introduces a method to compute such re-
sults. Furthermore, based on these results, an efficient
matching is presented.

In a first step, we refine what has already been used with-
out further investigation in the previous section: Simulation
will be used as a result for matching patterns on elementary
data trees.

6.1. Simulation as Result

Since the simulation that specifies a match between a
pattern and a database already contains the references to the
matching parts, it seems straightforward to use this infor-
mation as result and generate the matching fragment out of
it.

However, this approach has some deficiencies:

� in general, there is more than one simulation between
a pattern and a database

� usually not only the tree specified by the pattern is ex-
pected as a result, but also the context of its nodes, i.e.
the whole branch of the database that matched (with-
out this it would be a “what you get is what you already
have”)

The first problem can be addressed with a technique
called maximal simulation. The maximal simulation is the
union over all possible simulations for a given pattern and
database:

Proposition 6.1 (see [1], page 136)
If

"$#B� �M
�
�� 1

"$# � and
"$#B� �M
�

� 2

"$# � then"$#B� �

�

� 1 � � 2

"$# � .
Computing the maximal simulation is not difficult and

will result in the largest matching fragment of the database.
A simple algorithm that generates the maximal simulation
by searching for all possible simulations is presented in [1].
Refinements are possible that find the maximal simulation
immediately.

The second problem could be overcome by giving the
user the option to chose for each node in the pattern whether
it should “return” all children or only the matched children.

6.2. Grouping Inheritance: Non-Naı̈ve Matching
with Grouping

Using the maximal (rooted) simulation for elementary
data trees presented before, we now introduce an efficient
method to calculate the result for data trees with grouping
for the case when the matching is rooted.

In Section 5.3, it was necessary to compute all of the
interpretations for a tree with grouping when matching two
trees based on simulation. Although it is possible to restrict
this similar to a branch and bound search, the complexity is
nonetheless exponential in both time and space.

Furthermore, it appears difficult to combine the simula-
tions from data trees with grouping in the same way as can
be done for an elementary simulation with maximal simu-
lation. The combination would end up in recalculating the
grouping that was already there (before it was resolved to
elementary data trees).

The new approach treats the grouping facets on a more
abstract level by comparing them and is otherwise based on
the maximal simulation between elementary data trees.

The following steps will generate the desired result for
two data trees with grouping:

1. Generate the result from the maximal simulation be-
tween the two trees without taking into consideration
the grouping properties of the two data trees

2. For each node in the resulting tree, inherit the grouping
facet according to the relationships in table 2

In table 2, the relationships are currently given only for
the connector facet.

In example 6.1, the matching between two data trees
with grouping facets provides an enriched result, which is
of the same kind as the input data trees.

Grouping Facet in the
database pattern combined result
n n n
AND n AND
OR n OR
XOR n XOR
n AND AND
AND AND AND
OR AND AND
XOR AND -

�

n OR OR
AND OR AND
OR OR OR
XOR OR XOR
n XOR XOR
AND XOR -

�

OR XOR XOR
XOR XOR XOR

unordered n unordered
ordered n ordered **
n unordered unordered
unordered unordered unordered
ordered unordered ordered **
n ordered ordered
unordered ordered ordered
ordered ordered ordered **

� to N � to ' - ***
� to N � to ' - ****� to N � to ' ' ��� � � 	 ��� to ' � " � N 	 ' �

Table 2. Grouping Inheritance
�
AND and XOR will not generate a match if the

number of elements is larger than 1

Example 6.1
The result of matching between

"_# �
and

"$# � is a data tree
with grouping facets, wrt relationships provided in table 2.

DT1

A

CB

DT2

A

CB

A

CB

Result

ANDANDOR

7. Ongoing work

The data model we described in this paper is by no means
complete. Many issues are still ongoing work. This section
provides a quick overview over this ongoing work.

Variables

For a full-fledged localization language it will be neces-
sary to introduce “variable” as used in declarative languages

like Prolog or Haskell.
The formal introduction of variables is currently inves-

tigated and more or less stable. However, there are some
issues that still have to be resolved. Among these are mul-
tiple occurrences of the same variable in a tree, variables in
both the pattern and the database, etc.

Possible approaches could be inspired by the techniques
used in logic or functional programming languages.

Depth Facet

The depth facet is probably the most delicate of the
grouping facets. A formal representation has already been
suggested but has been left out of this paper for space rea-
sons. However the implementation is a topic with a broad
range of possibilities for optimization etc.

Inspirations for this could come from the area of graph
and search algorithms. Related work is done in the fields of
query languages for XML (see [21]).

Combining Grouping Facets

A topic that has not been addressed in this paper is the
combination of several grouping facets for the same group
of nodes. Combining facets can give very different mean-
ings to a set of nodes (consider e.g. the AND-connector
and the depth facet). Therefore, refining the semantics pre-
sented in Section 4 so as to accommodate multiple grouping
is worth investigating.

Arbitrary Graph Structures

In this paper we restricted the model to tree structured
databases. However, it would also be desirable to extend
this to databases having an arbitrary graph structure.

Non-Rooted Matching

In many applications it might be desirable to match some
pattern with some substructure of the database. While the
simulation technique allows such matching, research is nec-
essary in the field of answer semantics and implementation.

Implementations

One of the main issues is to bring the presented ideas into
an algorithmic form. Currently finished is an implementa-
tion of matching with and without grouping, but generating
results like presented in Section 6 is not yet possible.

8. Related work

A different approach to localization queries in SSD is
used by XPath [18]. The difference between XPath and our
localization approach is that the localization is done by a

path instead of a tree and the result usually is a set of nodes
instead of a combined answer.

Inspirations for the topic have originated from the paper
[10], where matching for elementary data trees with aggre-
gated answers has been proposed. However, our work goes
beyond and presents an enriched SSD data model based on
adding grouping constructs, i.e. aggregated trees also for
databases and patterns.

A collection of tree matching problems, called tree in-
clusion problems, has been addressed in [8], where the or-
dered/unordered node-labeled tree model has been used. [8]
provides also an extension of tree inclusion problems by
logical variables used to extract substructures of the pattern
instances and to express equality constraints on them.

The work presented here is also related to semantic mod-
eling in general, see e.g. [12] and [14] and especially to
ontologies and RDF(see Section 3).

References

[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web.
From Relations to Semistructured Data and XML. Morgan
Kaufmann Publishers, San Francisco, CA, 2000.

[2] P. Buneman, S. Davidson, and D. Suciu. Programming con-
structs for unstructured data. In DBLP, 1995.

[3] D. Calvanese, G. D. Giacomo, and M. Lenzerini. Modeling
and querying semi-structured data. Network and Informa-
tion Systems, 2(2):253–273, 1999.

[4] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland,
Y. Papakonstantinou, J. Ullman, and J. Widom. The
TSIMMIS project: Integration of heterogenous information
sources. In Information Processing Society of Japan, 1994.

[5] Defense Advanced Research Projects Agency. The DARPA
Agent Markup Language (DAML), 2000-.

[6] R. D. J. Thierry-Mieg. Syntactic definitions for the ACeDB
data base manager. Technical report, MRC-LMB xx.92,
MRC Laboratory for Molecular Biology, Cambridge, 1992.

[7] D. F. Jonathan Robie, Don Chamberlin. QUILT:
an XML query language. http://www.almaden.ibm.com
/cs/people/chamberlin/quilt euro.html, March 2000.

[8] P. Kilpeläinen. Tree matching problems with application to
structured text databases. PhD thesis, Department of Com-
puter Science, University of Helsinki, 1992.

[9] P. Kröger. Modeling of biological data. Master’s thesis,
Institute for Computer Sciences, University of Munich,
http://www.pms.informatik.uni-muenchen.de/lehre/projekt-
diplom-arbeit/biological-data.html, 2001, to appear.

[10] H. Meuss, K. Schulz, and F. Bry. Towards aggregated an-
swers for semistructured data. In International Conference
on Database Theory, 2001.

[11] On-To-Knowledge IST Programme,
http://www.ontoknowledge.org/oil/. Ontology Inference
Layer (OIL), 1999-2002.

[12] R. K. Richard Hull. Semantic database modeling: Survey,
applications, and research issues. ACM Computing Surveys,
19(3):201–260, September 1987.

[13] J. Robie. XQL: XML Query Language.
http://metalab.unc.edu/xql/xql-proposal.xml, August
1999.

[14] B. Thalheim. Entity-Relantionship Modeling. Foundations
of Database Technology. Springer, 2000.

[15] W3 Consortium, http://www.w3c.org/RDF/. RDF, 1999.
[16] W3C, http://www.w3.org/TR/1998/NOTE-XML-data-

0105/. XML-Data, Jan. 1998.
[17] W3C, http://www.w3.org/TR/NOTE-ddml. Document Def-

inition Markup Language (DDML) Specification, Version
1.0, Jan. 1999.

[18] W3C, http://www.w3.org/TR/xpath. XML Path Language
(XPath), 1999.

[19] W3C, http://www.w3.org/TR/query-datamodel/#section-
Order-operators. XML Query Data Model, Feb 2001.

[20] W3C, http://www.w3.org/XML/Schema. XML Schema,
March 2001.

[21] W3C, http://www.w3.org/TR/xquery/. XQuery: A Query
Language for XML, Feb 2001.

