Covers of Query Results

Ahmet Kara

Dan Olteanu

The Database of a Fast Food Restaurant

Orders

Customer	Day	Dish
elise	monday	burger
elise	friday	burger
steve	friday	hotdog
joe	monday	hotdog
joe	tuesday	hotdog
joe	friday	baguette

Dishes

Dish	Item	
burger	patty	
burger	onion	
burger	bun	
hotdog	bun	
hotdog	onion	
hotdog	sausage	

Items

Item	Price
patty	6
onion	2
bun	2
sausage	4
cheese	3

The Database of a Fast Food Restaurant

Orders

Customer	Day	Dish
elise	monday	burger
elise	friday	burger
steve	friday	hotdog
joe	monday	hotdog
joe	tuesday	hotdog
joe	friday	baguette

Dishes

Dish	Item	
burger	patty	
burger	onion	
burger	bun	
hotdog	bun	
hotdog	onion	
hotdog	sausage	

Items

Item	Price
patty	6
onion	2
bun	2
sausage	4
cheese	3

Customer	Day	Dish	ltem	Price
elise	monday	burger	patty	6
elise	monday	burger	onion	2
elise	monday	burger	bun	2
elise	friday	burger	patty	6
elise	friday	burger	onion	2
elise	friday	burger	bun	2

Redundancies in the Query Result

Orders

Customer	Day	Dish
elise	monday	burger
elise	friday	burger
steve	friday	hotdog
joe	monday	hotdog
joe	tuesday	hotdog
joe	friday	baguette

Dishes

Dish	Item	
burger	patty	
burger	onion	
burger	bun	
hotdog	bun	
hotdog	onion	
hotdog	sausage	

Items

Item	Price
patty	6
onion	2
bun	2
sausage	4
cheese	3

Customer	Day	Dish	ltem	Price
elise	monday	burger	patty	6
elise	monday	burger	onion	2
elise	monday	burger	bun	2
elise	friday	burger	patty	6
elise	friday	burger	onion	2
elise	friday	burger	bun	2

Redundancies in the Query Result

Orders

Customer	Day	Dish
elise	monday	burger
elise	friday	burger
steve	friday	hotdog
joe	monday	hotdog
joe	tuesday	hotdog
joe	friday	baguette

Dishes

Dish	Item
burger	patty
burger	onion
burger	bun
hotdog	bun
hotdog	onion
hotdog	sausage

Items

Item	Price
patty	6
onion	2
bun	2
sausage	4
cheese	3

Customer	Day	Dish	ltem	Price
elise	monday	burger	patty	6
elise	monday	burger	onion	2
elise	monday	burger	bun	2
elise	friday	burger	patty	6
elise	friday	burger	onion	2
elise	friday	burger	bun	2

Searching for a Core of the Query Result

Customer	Day	Dish	ltem	Price
elise	monday	burger	patty	6
elise	monday	burger	onion	2
elise	monday	burger	bun	2
elise	friday	burger	patty	6
elise	friday	burger	onion	2
elise	friday	burger	bun	2

elise	monday	burger
-------	--------	--------

elise	friday	burger
-------	--------	--------

Customer	Day	Dish	ltem	Price
elise	monday	burger	patty	6
elise	monday	burger	onion	2
elise	monday	burger	bun	2
elise	friday	burger	patty	6
elise	friday	burger	onion	2
elise	friday	burger	bun	2

burger patty

elise monday burger

burger onion

elise friday burger

burger bun

Customer	Day	Dish	ltem	Price
elise	monday	burger	patty	6
elise	monday	burger	onion	2
elise	monday	burger	bun	2
elise	friday	burger	patty	6
elise	friday	burger	onion	2
elise	friday	burger	bun	2

burger patty 6 patty monday elise burger 2 burger onion onion elise friday burger burger bun bun 2

Customer	Day	Dish	ltem	Price
elise	monday	burger	patty	6
elise	monday	burger	onion	2
elise	monday	burger	bun	2
elise	friday	burger	patty	6
elise	friday	burger	onion	2
elise	friday	burger	bun	2

burger patty 6 patty monday elise burger 2 burger onion onion elise friday burger burger bun bun 2

Customer	Day	Dish	ltem	Price
elise	monday	burger	patty	6
elise	monday	burger	onion	2
elise	monday	burger	bun	2
elise	friday	burger	patty	6
elise	friday	burger	onion	2
elise	friday	burger	bun	2

Customer	Day	Dish	ltem	Price
elise	monday	burger	patty	6
elise	monday	burger	onion	2
elise	monday	burger	bun	2
elise	friday	burger	patty	6
elise	friday	burger	onion	2
elise	friday	burger	bun	2

 $Q(\text{Customer}, \text{Day}, \text{Dish}, \text{Item}, \text{Price}) = \text{Orders} \bowtie \text{Dishes} \bowtie \text{Items}$

Customer	Day	Dish	Item	Price
elise	monday	burger	patty	6
elise	monday	burger	onion	2
elise	monday	burger	bun	2
elise	friday	burger	patty	6
elise	friday	burger	onion	2
elise	friday	burger	bun	2
	•	•	•	•

 $Q(\text{Customer}, \text{Day}, \text{Dish}, \text{Item}, \text{Price}) = \text{Orders} \bowtie \text{Dishes} \bowtie \text{Items}$

Customer	Day	Dish	ltem	Price
elise	monday	burger	patty	6
elise	monday	burger	onion	2
elise	monday	burger	bun	2
elise	friday	burger	patty	6
elise	friday	burger	onion	2
elise	friday	burger	bun	2

 $Q(\text{Customer}, \text{Day}, \text{Dish}, \text{Item}, \text{Price}) = \text{Orders} \bowtie \text{Dishes} \bowtie \text{Items}$

Customer	Day	Dish	ltem	Price
elise	monday	burger	patty	6
elise	monday	burger	onion	2
elise	monday	burger	bun	2
elise	friday	burger	patty	6
elise	friday	burger	onion	2
elise	friday	burger	bun	2
elise	triday	burger	bun	2

 $Q(\text{Customer}, \text{Day}, \text{Dish}, \text{Item}, \text{Price}) = \text{Orders} \bowtie \text{Dishes} \bowtie \text{Items}$

Customer	Day	Dish	Item	Price
elise	monday	burger	patty	6
elise	monday	burger	onion	2
elise	monday	burger	bun	2
elise	friday	burger	patty	6
elise	friday	burger	onion	2
elise	friday	burger	bun	2

 $Q(\text{Customer}, \text{Day}, \text{Dish}, \text{Item}, \text{Price}) = \text{Orders} \bowtie \text{Dishes} \bowtie \text{Items}$

Customer	Day	Dish	Item	Price
elise	monday	burger	patty	6
elise	monday	burger	onion	2
elise	monday	burger	bun	2
elise	friday	burger	patty	6
elise	friday	burger	onion	2
elise	friday	burger	bun	2
•	ı		•	ı

A Minimal Edge Cover of the Hypergraph

 $Q(\text{Customer}, \text{Day}, \text{Dish}, \text{Item}, \text{Price}) = \text{Orders} \bowtie \text{Dishes} \bowtie \text{Items}$

Customer	Day	Dish	ltem	Price
elise	monday	burger	patty	6
elise	monday	burger	onion	2
elise	monday	burger	bun	2
elise	friday	burger	patty	6
elise	friday	burger	onion	2
elise	friday	burger	bun	2

A Cover of (a part of) the Query Result

Customer	Day	Dish	Item	Price
elise	monday	burger	patty	6
elise	monday	burger	onion	2
elise	friday	burger	bun	2

Customer	Day	Dish	Item	Price
elise	monday	burger	patty	6
elise	monday	burger	onion	2
elise	monday	burger	bun	2
elise	friday	burger	patty	6
elise	friday	burger	onion	2
elise	friday	burger	bun	2

Why Covers?

Observation on Query Results

Query results can contain redundancies in computation and representation

Benefits of Covers

- A succinct relational representation system for query results
- The full query result can be enumerated from a cover with linearithmic time pre-computation and constant delay
- Allow for the succinct representation of the results of a wide range of computational problems
- Support subsequent operations:
 - aggregates
 - learning regression models
 - parallel computation

Previous Work

Foundations of Factorised Databases

- Size Bounds for Factorised Representations of Query Results [Olteanu and Závodný, TODS 2015]
- FDB: A Query Engine for Factorised Relational Databases
 [Bakibayev, Olteanu and Závodný, PVLDB, 2012]
- Factorised Representations of Query Results: Size Bounds and Readability
 [Olteanu and Závodný, ICDT 2012]

Aggregation in Factorised Databases

Aggregation and Ordering in Factorised Databases
 [Bakibayev, Kočiský, Olteanu, and Závodný, PVLDB 2013]

Regression Models in Factorised Databases

- Learning Linear regression Models over Factorised Joins [Schleich, Olteanu and Ciucanu, SIGMOD 2016]
- F: Regression Models over Factorised Views [Olteanu and Schleich, PVLDB 2016]

Outline of the Talk

- Covers of Query Results
- Computation of Covers
- Covers of more general Computational Problems

$$Q(A,B,C,D,E,F,G,H,I) = R(A,B) \bowtie S(A,C) \bowtie T(B,C) \bowtie U(D,A) \bowtie \\ V(E,D) \bowtie W(D,F,G) \bowtie X(C,I) \bowtie Y(C,H)$$

Hypergraph of Query Q

$$Q(A,B,C,D,E,F,G,H,I) = R(A,B) \bowtie S(A,C) \bowtie T(B,C) \bowtie U(D,A) \bowtie V(E,D) \bowtie W(D,F,G) \bowtie X(C,I) \bowtie Y(C,H)$$

Hypergraph of Query Q

$$Q(A,B,C,D,E,F,G,H,I) = R(A,B) \bowtie S(A,C) \bowtie T(B,C) \bowtie U(D,A) \bowtie V(E,D) \bowtie W(D,F,G) \bowtie X(C,I) \bowtie Y(C,H)$$

Hypergraph of Query Q

$$Q(A,B,C,D,E,F,G,H,I) = R(A,B) \bowtie S(A,C) \bowtie T(B,C) \bowtie U(D,A) \bowtie V(E,D) \bowtie W(D,F,G) \bowtie X(C,I) \bowtie Y(C,H)$$

Hypergraph of Query Q

$$Q(A,B,C,D,E,F,G,H,I) = R(A,B) \bowtie S(A,C) \bowtie T(B,C) \bowtie U(D,A) \bowtie V(E,D) \bowtie W(D,F,G) \bowtie X(C,I) \bowtie Y(C,H)$$

Hypergraph of Query Q

$$Q(A,B,C,D,E,F,G,H,I) = R(A,B) \bowtie S(A,C) \bowtie T(B,C) \bowtie U(D,A) \bowtie V(E,D) \bowtie W(D,F,G) \bowtie X(C,I) \bowtie Y(C,H)$$

Hypergraph of Query Q

$$Q(A,B,C,D,E,F,G,H,I) = R(A,B) \bowtie S(A,C) \bowtie T(B,C) \bowtie U(D,A) \bowtie \\ V(E,D) \bowtie W(D,F,G) \bowtie X(C,I) \bowtie Y(C,H)$$

Hypergraph of Query Q

$$Q(A,B,C,D,E,F,G,H,I) = R(A,B) \bowtie S(A,C) \bowtie T(B,C) \bowtie U(D,A) \bowtie V(E,D) \bowtie W(D,F,G) \bowtie X(C,I) \bowtie Y(C,H)$$

Hypergraph of Query Q

A Hypertree Decomposition of Q

Coverage, Connectivity

$$\pi_{\{A,B,C\}}Q(\mathbf{D}) = \pi_{\{A,B,C\}}\mathbf{C}$$

$$\pi_{\{A,D\}}Q(\mathbf{D}) = \pi_{\{A,D\}}\mathbf{C}$$

Given a query Q, a hypertree decomposition \mathcal{T} of Q and a database \mathbf{D} , a relation \mathbf{C} is result-preserving with respect to $(Q, \mathcal{T}, \mathbf{D})$ if $\pi_B \mathbf{C} = \pi_B Q(\mathbf{C})$ for each bag B of \mathcal{T} .

Covers of Query Results

Given a query Q, a hypertree decomposition \mathcal{T} of Q and a database \mathbf{D} , a cover of the query result $Q(\mathbf{D})$ over \mathcal{T} is a minimal result-preserving relation with respect to $(Q, \mathcal{T}, \mathbf{D})$.

Covers and Non-Covers

$$Q(A,B,C,D,E) = R \bowtie S \bowtie T \bowtie U \bowtie V$$

1
A
a ₁
a ₁
a ₁
a_2
a ₂

•			
В			
b ₁			
b ₂			
b ₃			
b ₄			
b ₁			

_	l	
	A	С
	a ₁	C ₁
	a ₁	C 2
	a ₂	C 2
	a ₁	C 3

U		\	/	
В	С		С	Е
b ₁	C ₁		C ₁	e ₁
b ₂	C ₁		C ₁	ez
bз	C ₂		C ₂	e ₁
b ₄	C ₂		C ₂	e
			C 3	e₁

 $Q(\mathbf{D})$

D	A	В	С	Е
d ₁	a ₁	b ₁	C ₁	e ₁
d ₂	a ₁	b ₁	C ₁	e ₁
d ₃	a ₁	b ₁	C ₁	e ₁
d ₁	a ₁	b ₁	C ₁	e ₂
d ₂	a ₁	b ₁	C ₁	e ₁
d ₁	a ₁	b ₁	C ₁	e ₁

Covers and Non-Covers

$$Q(A, B, C, D, E) = R \bowtie S \bowtie T \bowtie U \bowtie V$$

A	В
a ₁	b ₁
a ₁	b ₂
a ₁	b ₃
a ₂	b ₄
a ₂	b ₁

ı	
Α	C
a ₁	C ₁
a ₁	C ₂
a ₂	C ₂
a ₁	C 3

 b_1

 b_2

b₃

 b_4

J	V	
С	С	Е
C ₁	C ₁	e ₁
C ₁	C ₁	e ₂
C 2	C 2	e ₁
C 2	C 2	e ₂
	C 3	e ₁

 $\pi_{\{D,A\}}Q(\mathbf{D}) \quad \pi_{\{A,B,C\}}Q(\mathbf{D}) \quad \pi_{\{C,E\}}Q(\mathbf{D})$ d_1 a_1 d_2 a_1 dз a_1 d_1 a_2 d_2 a_2

C	Е
C ₁	e ₁
C ₁	e ₂
C 2	e ₁
C 2	e ₂

$$Q(A, B, C, D, E) = R \bowtie S \bowtie T \bowtie U \bowtie V$$

K		
D	A	
d ₁	a ₁	
d ₂	a ₁	
d ₃	a ₁	
d ₁	a ₂	
d ₂	a ₂	

11		-		
D	Α		A	В
d ₁	a ₁		a ₁	b ₁
d ₂	a ₁		a ₁	b ₂
d ₃	a ₁		a ₁	b ₃
d ₁	a ₂		a ₂	b ₄
d ₂	a ₂		a ₂	b ₁

Α	С
a ₁	C ₁
a ₁	C ₂
a ₂	C ₂
a ₁	C 3

V		
С	Ш	
C ₁	e ₁	
C ₁	e ₂	
C 2	e ₁	
C ₂	e ₂	
C 3	e ₁	

U

 C_1

 C_1

C2

C2

 b_1

 b_2

b₃

 b_4

not result-preserving

D	A	В	С	Е
d ₁	a ₁	b ₁	C ₁	e ₁
d ₂	a ₁	b ₁	C ₁	e ₁
d ₃	a ₁	b ₃	C ₂	e ₁
d ₁	a ₂	b ₄	C ₂	e ₁
d ₂	a ₂	b ₄	C ₂	e ₁

 $\pi_{\{D,A\}}Q(\mathbf{D})$ $\pi_{\{A,B,C\}}Q(\mathbf{D})$

С	ш
C ₁	e ₁
C ₁	e ₂
C ₂	e ₁
C ₂	e ₂

 $\pi_{\{C,E\}}Q(\mathbf{D})$

$$Q(A, B, C, D, E) = R \bowtie S \bowtie T \bowtie U \bowtie V$$

K		
D	A	
d ₁	a ₁	
d ₂	a ₁	
d ₃	a ₁	
d ₁	a ₂	
d ₂	a ₂	

A	В	
a ₁	b ₁	
a ₁	b ₂	
a ₁	b ₃	
a ₂	b ₄	
a ₂	b ₁	

C C ₁
C ₁
C 2
C 2
C 3

V		
С	Е	
C ₁	e ₁	
C ₁	e ₂	
C 2	e ₁	
C 2	e ₂	
C 3	e ₁	

U

 C_1

 C_1

C2

C2

 b_1

 b_2

b₃

 b_4

not minimal

D	A	В	С	Е
d ₁	a ₁	b ₁	C ₁	e ₁
d ₂	a ₁	b ₂	C ₁	e ₂
d ₃	a ₁	b ₃	C ₂	e ₁
d ₁	a ₂	b ₄	C ₂	e ₂
d ₂	a ₂	b ₄	C ₂	e ₂
d ₂	a ₂	b ₄	C ₂	e ₁

$$\pi_{\{D,A\}}Q(\mathbf{D}) \quad \pi_{\{A,B,C\}}Q(\mathbf{D}) \quad \pi_{\{C,E\}}Q(\mathbf{D})$$

$$Q(A,B,C,D,E) = R \bowtie S \bowtie T \bowtie U \bowtie V$$

R		
D	A	
d ₁	a ₁	
d ₂	a ₁	
d ₃	a ₁	
d ₁	a ₂	
d ₂	a ₂	

A	В	
a ₁	b ₁	
a ₁	b ₂	
a ₁	b ₃	
a ₂	b ₄	
a ₂	b ₁	
a ₂	b ₁	

A	С
a ₁	C ₁
a ₁	C 2
a ₂	C 2
a ₁	C 3

	V		
	С	Ш	
1	C ₁	e ₁	
1	C ₁	e ₂	
2	C ₂	e ₁	
2	C ₂	e ₂	
	C 3	e ₁	

U

 b_2

b₃

 b_4

a cover

D	A	В	С	Ш
d ₁	a ₁	b ₁	C ₁	e ₁
d ₂	a ₁	b ₂	C ₁	e ₂
d ₃	a ₁	b ₃	C ₂	e ₁
d ₁	a ₂	b ₄	C ₂	e ₂
d ₂	a ₂	b ₄	C ₂	e ₂

$$\pi_{\{D,A\}}Q(\mathbf{D})$$
 $\pi_{\{A,B,C\}}Q(\mathbf{D})$

D	A
d ₁	a ₁
d ₂	a ₁
d ₃	a ₁
d ₁	a_2
d ₂	a ₂

С	Е
C ₁	e ₁
C ₁	e ₂
C ₂	e ₁
C ₂	e ₂

 $\pi_{\{C,E\}}Q(\mathbf{D})$

$$Q(A, B, C, D, E) = R \bowtie S \bowtie T \bowtie U \bowtie V$$

K		
D	A	
d ₁	a ₁	
d ₂	a ₁	
d ₃	a ₁	
d ₁	a ₂	
d ₂	a ₂	

9		
A	В	
a ₁	b ₁	
a ₁	b ₂	
a ₁	b ₃	
a ₂	b ₄	
a ₂	b ₁	

A	C
a ₁	C ₁
a ₁	C ₂
a ₂	C ₂
a ₁	C 3

V		
С	Ш	
C ₁	e ₁	
C ₁	e ₂	
C ₂	e ₁	
C 2	e ₂	
C 3	e ₁	
	C ₁ C ₁ C ₂ C ₂	

U

 b_2

b₃

 b_4

C2

C2

another cover

D	A	В	С	Е
d ₁	a ₁	b ₁	C ₁	e ₁
d ₂	a ₁	b ₁	C ₁	e ₁
d ₃	a ₁	b ₂	C ₁	e ₂
d ₃	a ₁	b ₃	C ₂	e ₁
d ₁	a ₂	b ₄	C ₂	e ₂
d ₂	a ₂	b ₄	C ₂	e ₂

$$\pi_{\{D,A\}}Q(\mathbf{D})$$
 $\pi_{\{A,B,C\}}Q(\mathbf{D})$ $\pi_{\{C,E\}}Q(\mathbf{D})$

С	Ш
C ₁	e ₁
C ₁	e ₂
C ₂	e ₁
C ₂	e ₂

Insights on Covers

Let Q be a query, $\mathcal T$ a hypertree decomposition of Q, $\mathbf D$ a database and $\mathbf C$ a cover of $Q(\mathbf D)$ over $\mathcal T$.

Covers are included in Query Result

 ${f C}$ is a subset of $Q({f D})$.

Covers allow Recovery of Query Result

$$\bowtie_{B \in \mathcal{S}(\mathcal{T})} \pi_B \mathbf{C} = Q(\mathbf{D}).$$

Characterization by Minimal Edge Covers in Hypergraph of Query Result

 ${f C}$ corresponds to a minimal edge cover in the hypergraph of the join of the projections of $Q({f D})$ onto the bags of ${\cal T}$.

Insights on Covers

Let Q be a query, $\mathcal T$ a hypertree decomposition of Q, $\mathbf D$ a database and $\mathbf C$ a cover of $Q(\mathbf D)$ over $\mathcal T$.

Size of Covers

The size of ${\bf C}$ is $\mathcal{O}(|{\bf D}|^{\operatorname{fhtw}(\mathcal{T})})$.

There are arbitrarily large databases $\mathbf D$ such that each cover of $Q(\mathbf D)$ has size $\Omega(|\mathbf D|^{\mathrm{fhtw}(\mathcal T)})$.

Constant-delay Enumeration from Covers

 $Q(\mathbf{D})$ can be enumerated from \mathbf{C} with $\widetilde{\mathcal{O}}(|\mathbf{C}|)$ pre-computation time and constant delay.

Covers of Results of Acyclic Queries

Representation System: Acyclic Query + Input Database

- Input database has asymptotically the same size as a minimumsized cover of the query result.
- Enumeration of the query result from the input database has the same time complexity as covers [Bagan et al., 07].

So, why use a cover instead of the input database in case of acyclic queries?

Covers of Results of Acyclic Queries

Representation System: Acyclic Query + Input Database

- Input database has asymptotically the same size as a minimumsized cover of the query result.
- Enumeration of the query result from the input database has the same time complexity as covers [Bagan et al., 07].

So, why use a cover instead of the input database in case of acyclic queries?

Practical Benefits of Covers

- Covers provide cache and access locality.
- A cover is a sample of the query result.
- Subsequent processing may require a single relation (e.g, machine learning over joins).

Computation of Covers

Two possible ways to compute covers in worst-case optimal time:

Monolithic Approach

 Given a query, a hypertree decomposition and a database, construct a cover by considering all joins at once.

Compositional Approach

- Given a query, a hypertree decomposition and a database, construct relations for the bags of the decomposition.
- Turn bag relations into a globally consistent database.
- Use a cover-join plan to compute the overall cover by computing partial covers.

Orders

Customer	Day	Dish
elise	monday	burger
elise	friday	burger
steve	friday	hotdog
joe	monday	hotdog
joe	tuesday	hotdog

Dishes

Dish	Item
burger	patty
burger	onion
burger	bun
hotdog	bun
hotdog	onion
hotdog	sausage

Items

Item	Price
patty	6
onion	2
bun	2
sausage	4

Orders

Customer	Day	Dish
elise	monday	burger
elise	friday	burger
steve	friday	hotdog
joe	monday	hotdog
joe	tuesday	hotdog

Dishes

Dish	Item
burger	patty
burger	onion
burger	bun
hotdog	bun
hotdog	onion
hotdog	sausage

Items

Item	Price	
patty	6	
onion	2	
bun	2	
sausage	4	

Valid cover-join plans

(Orders $\stackrel{\circ}{\bowtie}$ Dishes) $\stackrel{\circ}{\bowtie}$ Items

Orders $\stackrel{\circ}{\bowtie}$ (Dishes $\stackrel{\circ}{\bowtie}$ Items)

A non-valid plan

Orders

Customer	Day	Dish
elise	monday	burger
elise	friday	burger
steve	friday	hotdog
joe	monday	hotdog
joe	tuesday	hotdog

Dishes

Dish	ltem
burger	patty
burger	onion
burger	bun
hotdog	bun
hotdog	onion
hotdog	sausage

Items

Item	Price	
patty	6	
onion	2	
bun	2	
sausage	4	

Valid cover-join plans

→ (Orders ⋈ Dishes) ⋈ Items

Orders ⋈ (Dishes ⋈ Items)

A non-valid plan

Orders

Customer	Day	Dish
elise	monday	burger
elise	friday	burger
steve	friday	hotdog
joe	monday	hotdog
joe	tuesday	hotdog

Dishes

Dish	Item
burger	patty
burger	onion
burger	bun
hotdog	bun
hotdog	onion
hotdog	sausage

Items

Item	Price	
patty	6	
onion	2	
bun	2	
sausage	4	

Valid cover-join plans

(Orders $\stackrel{\circ}{\bowtie}$ Dishes) $\stackrel{\circ}{\bowtie}$ Items

 \longrightarrow Orders $\stackrel{\circ}{\bowtie}$ (Dishes $\stackrel{\circ}{\bowtie}$ Items)

A non-valid plan

Orders

Customer	Customer Day I	
elise	monday	burger
elise	friday	burger
steve	friday	hotdog
joe	monday	hotdog
joe	tuesday	hotdog

Dishes

Dish	Item	
burger	patty	
burger	onion	
burger	bun	
hotdog	bun	
hotdog	onion	
hotdog	sausage	

Items

Item	Price		
patty	6		
onion	2		
bun	2		
sausage	4		

Valid cover-join plans

(Orders $\stackrel{\circ}{\bowtie}$ Dishes) $\stackrel{\circ}{\bowtie}$ Items

Orders $\stackrel{\circ}{\bowtie}$ (Dishes $\stackrel{\circ}{\bowtie}$ Items)

A non-valid plan

Orders

Customer	Day	Dish	
elise	monday	burger	
elise	friday	burger	
steve	friday	hotdog	
joe	monday	hotdog	
joe	tuesday	hotdog	

Dishes

Dish	Item	
burger	patty	
burger	onion	
burger	bun	
hotdog	bun	
hotdog	onion	
hotdog	sausage	

Items

1401110			
Item	Price		
patty	6		
onion	2		
bun	2		
sausage	4		

Valid cover-join plans

→ (Orders $\stackrel{\circ}{\bowtie}$ Dishes) $\stackrel{\circ}{\bowtie}$ Items

Orders $\stackrel{\circ}{\bowtie}$ (Dishes $\stackrel{\circ}{\bowtie}$ Items)

A non-valid plan

Orders

Dish	Day	Customer		
burger	monday	elise		
burger	friday	elise		
hotdog	friday	steve		
hotdog	monday	joe		
hotdog	tuesday	joe		

Dishes

	Dish	Item
_	burger	patty
_	burger	onion
	burger	bun
/	hotdog	bun
/	hotdog	onion
/	hotdog	sausage

Items

Item	Price		
patty	6		
onion	2		
bun	2		
sausage	4		

Valid cover-join plans

→ (Orders ⋈ Dishes) ⋈ Items

Orders ⋈ (Dishes ⋈ Items)

A non-valid plan

Orders M Dishes

Customer	Day	Dish	ltem
elise	monday	burger	patty
elise	friday	burger	onion
elise	friday	burger	bun
steve	friday	hotdog	bun
joe	monday	hotdog	onion
joe	tuesday	hotdog	sausage

Items

1101110			
Item	Price		
patty	6		
onion	2		
bun	2		
sausage	4		

Valid cover-join plans

→ (Orders ⋈ Dishes) ⋈ Items

Orders ⋈ (Dishes ⋈ Items)

A non-valid plan

Valid cover-join plans

→ (Orders ⋈ Dishes) ⋈ Items

Orders ⋈ (Dishes ⋈ Items)

A non-valid plan

(Orders $\stackrel{\circ}{\bowtie}$ Dishes) $\stackrel{\circ}{\bowtie}$ Items

Custome	Day	Dish	Item	Price
elise	monday	burger	patty	6
elise	friday	burger	onion	2
elise	friday	burger	bun	2
steve	friday	hotdog	bun	2
joe	monday	hotdog	onion	2
joe	tuesday	hotdog	sausage	4

Customer Price
Day Dish Item

Valid cover-join plans

A non-valid plan

Computation Time for Covers

(Orders $\stackrel{\circ}{\bowtie}$ Dishes) $\stackrel{\circ}{\bowtie}$ Items

Custome	Day	Dish	Item	Price
elise	monday	burger	patty	6
elise	friday	burger	onion	2
elise	friday	burger	bun	2
steve	friday	hotdog	bun	2
joe	monday	hotdog	onion	2
joe	tuesday	hotdog	sausage	4

Computation Time for Covers

Given a query Q, a hypertree decomposition $\mathcal T$ of Q and a database $\mathbf D$, any cover-join plan for Q over $\mathcal T$ computes a cover of $Q(\mathbf D)$ over $\mathcal T$ in time $\widetilde{\mathcal O}(|\mathbf D|^{\mathrm{fhtw}(\mathcal T)})$.

Covering the Results of Functional Aggregate Queries (FAQs)

Example

• φ counts for each tuple (a,b,d), the number of tuples in the result containing this tuple:

$$\varphi(a,b,d) = \sum_{c,e,f,g,h} \psi_1(a,b,c) \cdot \psi_2(b,d,e) \cdot \psi_3(d,e,f) \cdot \psi_4(f,h) \cdot \psi_5(e,g)$$

where

 $\psi_1(a,b,c) = 1 \Leftrightarrow (a,b,c) \in R_1$ and so on ...

Covering the Results of Functional Aggregate Queries (FAQs)

Example

• φ counts for each tuple (a,b,d), the number of tuples in the result containing this tuple:

$$\varphi(a,b,d) = \sum_{c,e,f,g,h} \psi_1(a,b,c) \cdot \psi_2(b,d,e) \cdot \psi_3(d,e,f) \cdot \psi_4(f,h) \cdot \psi_5(e,g)$$

where

$$\psi_1(a,b,c)=1\Leftrightarrow (a,b,c)\in R_1 \ \ \text{and so on } \dots$$

• push aggregates past join:

$$\varphi(a,b,d) = \underbrace{\left(\sum_{c} \psi_{1}(a,b,c)\right) \cdot \sum_{e} \left(\psi_{2}(b,d,e) \cdot \sum_{f} \left(\psi_{3}(d,e,f) \cdot \sum_{h} \psi_{4}(f,h)\right) \cdot \sum_{g} \psi_{5}(e,g)\right)}_{\psi_{6}(a,b)}$$

$$\underbrace{\psi_{6}(a,b)}_{\psi_{6}(d,e)}$$

$$\underbrace{\psi_{9}(d,e)}_{\psi_{10}(b,d)}$$

Covering the Results of Functional Aggregate Queries (FAQs)

Example

• φ counts for each tuple (a,b,d), the number of tuples in the result containing this tuple:

$$\varphi(a,b,d) = \sum_{c,e,f,g,h} \psi_1(a,b,c) \cdot \psi_2(b,d,e) \cdot \psi_3(d,e,f) \cdot \psi_4(f,h) \cdot \psi_5(e,g)$$

where

$$\psi_1(a,b,c)=1\Leftrightarrow (a,b,c)\in R_1 \ \text{ and so on } \dots$$

push aggregates past join:

$$\varphi(a,b,d) = \underbrace{\left(\sum_{c} \psi_{1}(a,b,c)\right)}_{\psi_{6}(a,b)} \cdot \underbrace{\sum_{e} \left(\psi_{2}(b,d,e) \cdot \sum_{f} \left(\psi_{3}(d,e,f) \cdot \sum_{h} \psi_{4}(f,h)\right) \cdot \sum_{g} \psi_{5}(e,g)\right)}_{\psi_{9}(d,e)}$$

• Compute a cover of the join of the relational encodings of $\psi_6(a,b)$ and $\psi_{10}(b,d)$

Functional Aggregate Queries [Khamis et al., PODS 2016]

FAQs encompass many problems in

- Constraint Satisfaction,
- Logic,
- Databases,
- Matrix Operations,
- Probabilistic Graphical Models,
- Machine Learning,
- •

Computation Time of an FAQ result

$$\widetilde{\mathcal{O}}(|\mathbf{D}|^{\mathrm{faqw}(\varphi)} + \mathrm{output\ size})$$

Computation Time of an FAQ-Cover

$$\widetilde{\mathcal{O}}(|\mathbf{D}|^{\mathrm{faqw}(\varphi)})$$

Summary

Motivation

- Query results entail redundancies in representation and computation
- Design of a representation system for query results which reduces such redundancies

Covers

- One-relational, lossless, succinct representation of query results
- Allow for constant-delay enumeration
- Can be applied to a wide range of computational problems

On-going work

Usage of covers in distributed databases to reduce communication complexity