
2nd Workshop on Management and mining Of UNcertain Data (MOUND)
Long Beach, March 1st, 2010

A Toolbox of Query Evaluation Techniques for
Probabilistic Databases

Dan Olteanu, Oxford University Computing Laboratory

Uncertain and Probabilistic Data

Uncertain and probabilistic data is commonplace:

(Web) information extraction

Processing manually entered data (such as census forms)

Data integration, data cleaning

Risk management: Decision support queries, hypothetical queries

Social network analysis

Managing scientific data; sensor data

Crime fighting, surveillance, plagiarism detection, predicting terrorist actions

Relational DBMSs are not flexible enough to accommodate such data

one tries to find a “good” yet partial fit of the data in the relational format

Recent years have seen advances in developing

representation models for uncertain/probabilistic data,

uncertainty-aware query languages, and

scalable query evaluation techniques for such data.

Probabilistic Databases Today

Many active projects, for instance

Mystiq, Lahar (Washington U.)

Trio (Stanford)

MCDB (IBM Almaden & Florida)

BayesStore (Berkeley)

Orion (Purdue)

PrDB (Maryland)

Also at UMass, Waterloo, Hong Kong, Florida State, Wisconsin, MIT, . . .

Projects I am involved in

MayBMS (Cornell+Oxford)

◮ Uncertainty-aware query languages and data representation models

SPROUT = Scalable Query PROcessing on Uncertain Tables (Oxford)
◮ Query engine that extends PostgreSQL backend

MayBMS and SPROUT are available at maybms.sourceforge.net.

maybms.sourceforge.net

Outline of this talk

Two (discrete) probabilistic data models
◮ U-relational databases: a complete but “hard” model
◮ Tuple-independent databases: a restricted but “easier” model

Query evaluation in probabilistic databases
◮ The non-probabilistic case
◮ Data complexity in the probabilistic case

Exact query evaluation techniques
◮ Evaluation of tractable conjunctive queries

⋆ using OBDDs (ordered binary decision diagrams)
⋆ using relational plans

◮ Detection of large tractable query & data sub-instances

Approximate query evaluation techniques with error guarantees
◮ Monte Carlo techniques (FPRAS)
◮ Incremental evaluation techniques based on lineage factorization

U-relational Probabilistic Databases

Syntax.
Probabilistic databases are relational databases where

There is a finite set of independent random variables X = {x1, . . . , xn} with
finite domains Domx1 , . . . ,Domxn .

Tuples are associated with lineage, i.e., conjunctions of atomic events of the
form xi = a or xi 6= a where xi ∈ X and a ∈ Domxi .

There is a probability distribution over the assignments of each variable.

Semantics.

Possible worlds defined by total assignments θ over X.

The world defined by assignment θ
◮ consists of all tuples with condition φ such that θ(φ) = true.
◮ has probability defined by the product of probabilities of each assignment in θ.

This formalism can represent any discrete probability distribution over relational databases.

Example: Probabilistic Databases

Consider a simplified TPC-H scenario with customers (Cust) and orders (Ord):

Cust
ckey cname V1 P1 V2 P2

1 Joe x1 0.1 x3 0.1
2 Dan x1 0.9 x4 0.5
3 Li x2 0.3 x4 0.5
4 Mo x2 0.7 x5 0.2

Ord
okey ckey odate V1 P1 V2 P2

1 1 1995-01-10 y1 0.1 x5 0.2
2 1 1996-01-09 y2 0.2 x4 0.5
3 2 1994-11-11 y3 0.3 x3 0.1

Variables are Boolean (wlog); write x instead of x = 1, x instead of x = 0.

A pair (Vi ,Pi) states that the variable assignment given by Vi has the
probability given by Pi .

Lineage can represent arbitrary correlations between tuples, eg,

◮ (1,Joe) and (3,Li) are independent: They use disjoint sets of variables.
◮ (1,Joe) and (2,Dan) are mutually exclusive: x1 is either true or false.

Example: Probabilistic Databases

Consider the world A defined by a total assignment θ:

x1, x2, y1, y2 are true, and all other variables are false.

Cust
ckey cname V1 P1 V2 P2

1 Joe x1 0.1 x3 0.1
2 Dan x1 0.9 x4 0.5
3 Li x2 0.3 x4 0.5
4 Mo x2 0.7 x5 0.2

Ord
okey ckey odate V1 P1 V2 P2

1 1 1995-01-10 y1 0.1 x5 0.2
2 1 1996-01-09 y2 0.2 x4 0.5
3 2 1994-11-11 y3 0.3 x3 0.1

Example: Probabilistic Databases

Consider the world A defined by a total assignment θ:

x1, x2, y1, y2 are true, and all other variables are false.

Cust
ckey cname V1 P1 V2 P2

1 Joe x1 0.1 x3 0.1
2 Dan x1 0.9 x4 0.5
3 Li x2 0.3 x4 0.5
4 Mo x2 0.7 x5 0.2

Ord
okey ckey odate V1 P1 V2 P2

1 1 1995-01-10 y1 0.1 x5 0.2
2 1 1996-01-09 y2 0.2 x4 0.5
3 2 1994-11-11 y3 0.3 x3 0.1

The world A is as follows:

Cust
ckey cname
3 Li

Ord
okey ckey odate
1 1 1995-01-10
2 1 1996-01-09

Probability of A = product of probabilities of the assignments in θ:

Pr(A) = Pr(θ) = Pr(x1) · Pr(x2) · Pr(y1) · Pr(y2) · Pr(x3) · Pr(x4) · Pr(x5) · Pr(y3).

Tuple-independent Probabilistic Databases

Tuple-independent: Tuples have independent lineage, or equivalently

Each tuple t is associated with a Boolean random variable xt .

Tuple t is in the world defined by θ if xt = true holds in θ.

Cust
ckey cname V P
1 Joe x1 0.1
2 Dan x2 0.2
3 Li x3 0.3
4 Mo x4 0.4

Ord
okey ckey odate V P
1 1 1995-01-10 y1 0.1
2 1 1996-01-09 y2 0.2
3 2 1994-11-11 y3 0.3
4 2 1993-01-08 y4 0.4
5 3 1995-08-15 y5 0.5
6 3 1996-12-25 y6 0.6

Item
okey disc ckey V P
1 0.1 1 z1 0.1
1 0.2 1 z2 0.2
3 0.4 2 z3 0.3
3 0.1 2 z4 0.4
4 0.4 2 z5 0.5
5 0.1 3 z6 0.6

Query Evaluation in Probabilistic Databases

Subsumed by general probabilistic inference, which was investigated in AI for
many years. Is there something left to do for the database community?

Query Evaluation in Probabilistic Databases

Subsumed by general probabilistic inference, which was investigated in AI for
many years. Is there something left to do for the database community?

The database approach is based on two fundamental observations:

the separation of (very large) data and (small and fixed) query, and

the use of mature relational query engines to achieve scalability.

Query Evaluation in Probabilistic Databases

The MayBMS/SPROUT approach:

Given probabilistic database T = {A1, . . . ,An} and query q.

Under possible world semantics: q is evaluated in each possible world of T .

Is there q such that q(T) = {q(A1), . . . , q(An)}? [Imielinski&Lipski84]

T q(T)

{A1, . . . ,An} {q(A1), . . . , q(An)}

rep

q

q

rep

Compute the probability of each distinct tuple in q(T).

How hard is query evaluation in probabilistic databases?

q(T) can be computed in PTIME (wrt data complexity) for relational algebra
queries and U-relational databases [AJK&O.08]

Probability computation is in general very hard, but there are tractable cases

Example: Query Evaluation

Query asking for the dates of discounted orders shipped to customer ’Joe’:

Q(odate) :- Cust(ckey ,′ Joe′),Ord(okey , ckey , odate), Item(okey , disc, ckey), disc > 0
odate Vc Pc Vo Po Vi Pi tuple probability

1995-01-10 x1 0.1 y1 0.1 z1 0.1 0.1 · 0.1 · 0.1
1995-01-10 x1 0.1 y1 0.1 z2 0.2 0.1 · 0.1 · 0.2

Query Q is Q changed so that the lineage of input tuples is copied in the
answer tuples.

Probability of distinct answer tuple (1995-01-10) is the probability of the
associated lineage x1y1z1 + x1y1z2.

Difficulty:

The sets of satisfying assigments of any two clauses may overlap.

It may require to iterate over its (exponentially many) satisfying assignments.

Dichotomy Property

Discussed here [Dalvi&Suciu07]:

Conjunctive queries without self-joins (CQ1) on

Tuple-independent databases.

The data complexity of any CQ1 query is either FP or #P-hard.

#P = class of functions f (x) for which there exists a PTIME
non-deterministic Turing machine M such that f (x) = number of accepting
computations of M on input x .

FP = class of functions that can be solved by a deterministic Turing machine
in PTIME. These functions can have any output, not only true/false.

Further tractability results not discussed here:

Dichotomy for conjunctive queries with self-joins [Dalvi&Suciu07b]

Tractable queries with inequalities (<,≤, 6=) [O.&Huang08,O.&Huang09]

Extension to the block-independent disjoint model follow easily [DRS07]

All tractable CQ1 queries are hierarchical

A query is hierarchical if for any two non-head variables, either their sets of
subgoals are disjoint, or one set is contained in the other.

Q(odate) :- Cust(ckey ,′ Joe′),Ord(okey , ckey , odate), Item(okey , disc, ckey), disc > 0.

is hierarchical; also without odate as head variable.

subgoals(disc)={Item}, subgoals(okey)={Ord, Item}, subgoals(ckey)={Cust,Ord, Item}.

It holds that subgoals(disc)⊆ subgoals(okey)⊆ subgoals(ckey).

ckey

ckey,okey

Ord(okey,ckey,odate) Item(okey,disc,ckey)

Cust(ckey,’Joe’)

Exact Query Evaluation

Exact Query Evaluation using SPROUT

Cast the query evaluation problem as a decision diagram construction problem.

Given a query q and a probabilistic database D,
each distinct tuple t ∈ q(D) is associated with a DNF expression φt .

Probability of t is probability of φt .

Compile φt into an equivalent binary decision diagram (BDD).

Probability of φt is then the probability of its BDD.

SPROUT employs secondary-storage techniques for BDD construction and
probability computation.

BDDs

Commonly used to represent compactly large Boolean expressions.

Idea: Decompose Boolean expressions using variable elimination and avoid
redundancy in the representation.
Variable elimination by Shannon’s expansion: φ = x · φ |x +x̄ · φ |x̄ .

Supports linear-time probability computation.

Pr(φ) = Pr(x · φ |x +x̄ · φ |x̄)

= Pr(x · φ |x) + Pr(x̄ · φ |x̄)

= Pr(x) · Pr(φ |x) + Pr(x̄) · Pr(φ |x̄)

Ordered BDDs (OBDDs):

Variable order π = order of variable eliminations;
the same variable order on all root-to-leaf paths ⇒ ordered BDDs (OBDDs)

An OBDD for φ is uniquely identified by the pair (φ, π).

Compilation example

R A B Vr

a1 b1 x1
a2 b1 x2
a2 b2 x3
a3 b3 x4

S A C Vs

a1 c1 y1
a1 c2 y2
a2 c1 y3
a4 c2 y4

q :- R(A,B), S(A,C)
Vr Vs

x1 y1
x1 y2
x2 y3
x3 y3

Query q has lineage φ = x1y1 + x1y2 + x2y3 + x3y3.
Assume variable order: π = x1y1y2x2x3y3.
Task: Construct the OBDD (φ, π).

Compilation example

Task: Construct OBDD (φ, π), where

φ = x1y1 + x1y2 + x2y3 + x3y3 and π = x1y1y2x2x3y3.

Step 1: Eliminate variable x1 in φ.

x1

x2y3 + x3y3 y1 + y2 + x2y3 + x3y3

Compilation example

Task: Construct OBDD (φ, π), where

φ = x1y1 + x1y2 + x2y3 + x3y3 and π = x1y1y2x2x3y3.

Step 2: Eliminate variable y1.

x1

x2y3 + x3y3 y1

y2 + x2y3 + x3y3 1

Compilation example

Task: Construct OBDD (φ, π), where

φ = x1y1 + x1y2 + x2y3 + x3y3 and π = x1y1y2x2x3y3.

Step 3: Eliminate variable y2.

x1

x2y3 + x3y3 y1

y2 1

x2y3 + x3y3 1

Some leaves have the same expressions ⇒ Represent them only once!

Compilation example

Task: Construct OBDD (φ, π), where

φ = x1y1 + x1y2 + x2y3 + x3y3 and π = x1y1y2x2x3y3.

Step 4: Merge leaves with the same expressions.

x1

y1

y2

x2y3 + x3y3 1

Compilation example

Task: Construct OBDD (φ, π), where

φ = x1y1 + x1y2 + x2y3 + x3y3 and π = x1y1y2x2x3y3.

Step 5: Eliminate variable x2.

x1

y1

y2

x2 1

x3y3 y3 + x3y3

Compilation example

Task: Construct OBDD (φ, π), where

φ = x1y1 + x1y2 + x2y3 + x3y3 and π = x1y1y2x2x3y3.

Step 6: Replace y3 + x3y3 by y3.

x1

y1

y2

x2 1

x3y3 y3

Compilation example

Task: Construct OBDD (φ, π), where

φ = x1y1 + x1y2 + x2y3 + x3y3 and π = x1y1y2x2x3y3.

Step 7: Eliminate variable x3.

x1

y1

y2

x2 1

x3 y3

0 y3

Compilation example

Task: Construct OBDD (φ, π), where

φ = x1y1 + x1y2 + x2y3 + x3y3 and π = x1y1y2x2x3y3.

Step 8: Merge leaves with the same expression y3.

x1

y1

y2

x2 1

x3

0 y3

Compilation example

Task: Construct OBDD (φ, π), where

φ = x1y1 + x1y2 + x2y3 + x3y3 and π = x1y1y2x2x3y3.
Step 9: Eliminate variable y3.

x1

y1

y2

x2 1

x3

0 y3

0 1

Compilation example

Task: Construct OBDD (φ, π), where

φ = x1y1 + x1y2 + x2y3 + x3y3 and π = x1y1y2x2x3y3.
Step 10 (final): Merge leaves with the same expression (0 or 1).

x1

y1

y2

x2

x3

y3

0 1

Compilation example: Summing Up

OBDD (φ, π) has size bounded in the number of literals in φ.
(exactly one node per variable in φ in our example)

Questions

1 Is this property shared by the BDDs of many queries?

2 Can we efficiently construct such succinct BDDs?

Compilation example: Summing Up

OBDD (φ, π) has size bounded in the number of literals in φ.
(exactly one node per variable in φ in our example)

Questions

1 Is this property shared by the BDDs of many queries?

2 Can we efficiently construct such succinct BDDs?

The answer is in the affirmative for both questions!

Tractable Queries and Succinct BDDs

For any hierarchical query q and database D, ∀t ∈ q(D), and lineage φt ,

There is a variable order π computable in time O(|φt | · log
2 |φt |) such that

The OBDD (φt , π) has size O(|Vars(φt)) and can be computed in time
O(|φt | · log |φt |).

φt can be factorized into read-once functions! [O.&Huang08]

BDD construction in polynomial time for a class of tractable conjunctive queries
with inequalities. [O.&Huang09]

Good variable orders can be statically derived from the query structure!

Static Query Analysis: Query Signatures

Query signatures for TQ queries capture

the structures of queries and

the one/many-to-one/many relationships between the query tables;

variable orders for succinct BDDs representing compiled lineage!

A

R(A,B) S(A,C)

Query q :- R(A,B), S(A,C) has signature (R∗S∗)∗ .

There may be several R-tuples with the same A-value, hence R∗

There may be several S-tuples with the same A-value, hence S∗

R and S join on A, hence R∗S∗

There may be several A-values in R and S , hence (R∗S∗)∗

Variable orders captured by (R∗S∗)∗ (xi ’s are from R , yj ’s are from S):

{[x1(y1y2)][(x2x3)y3]}, {[(x2x3)y3][x1(y1y2)]}, {[y3(x3x2)][x1(y2y1)]}, etc.

Query Rewriting under Functional Dependencies (FDs)

FDs on tuple-independent databases can help deriving better query signatures.

Given a set of FDs Σ and a conjunctive query of the form

Q = πA0
(σφ(R1(A1) ⊲⊳ . . . ⊲⊳ Rn(An))

where φ is a conjunction of unary predicates. Let Σ0 = CLOSUREΣ(A0).
Then, the Boolean query

π∅(σφ(R1(CLOSUREΣ(A1)− Σ0) ⊲⊳ . . . ⊲⊳ Rn(CLOSUREΣ(An)− Σ0)))

is called the FD-reduct of Q under Σ. [O.&HK09]

If there is a sequence of chase steps under Σ that turns Q into a hierarchical
query, then the fixpoint of the chase (the FD-reduct) is hierarchical.

Importance of FD-reducts

The signature of Q’s FD-reduct captures the structure of Q’s lineage.

Two relevant cases
1 Intractable queries may admit tractable FD-reducts.

Under X → Y , the hard query Q :- R(X), S(X ,Y),T (Y) admits the
hierarchical FD-reduct Q ′ :- R(X ,Y), S(X ,Y),T (Y) with signature
((RS)∗T)∗.

2 FD-reducts have more precise query signatures.

In the presence of keys ckey and okey, the query
Q(odate) :- Cust(ckey , cname),Ord(okey , ckey , odate), Item(okey , disc, ckey)

with signature (Cust∗(Ord∗Item∗)∗)∗ rewrites into

Q ′ :- Cust(ckey , cname),Ord(okey , ckey , cname), Item(okey , disc, ckey , cname)

with signature (Cust(Ord Item∗)∗)∗.

Case Study: TPC-H Queries

Considered the conjunctive part of each of the 22 TPC-H queries

Boolean versions (B)

with original selection attributes, but without aggregates (O)

Hierarchical in the absence of key constraints

8 queries (B)

13 queries (O)

Hierarchical in the presence of key constraints

8+4 queries (B)

13+4 queries (O)

In-depth study at
http://www.comlab.ox.ac.uk/people/dan.olteanu/papers/icde09queries.html

http://www.comlab.ox.ac.uk/people/dan.olteanu/papers/icde09queries.html

Secondary-storage Query Evaluation

Query evaluation approached in two logically-independent steps

1 Compute query answer using a relational query plan of your choice.

2 Compute probabilities of each distinct answer (or temporary) tuple.

Probability computation supported by a new aggregation operator that can

blend itself in any relational query plan,

be placed on top of the query plan, or partially pushed down past joins.

compute in parallel different fragments of the BDD for the lineage
without materializing the BDD.

Our aggregation operator is a sequence of

aggregation steps. Effect on query signature: α∗ → α

propagation steps. Effect on query signature: αβ → α

Example of Probability Computation
x1

y1

y2

x2

x3

y3

0 1

q :- R(A,B), S(A,C)
Vr Vs

x1 y1
x1 y2
x2 y3
x3 y3

How to proceed?

1 Sort query answer by (Vr ,Vs).

Initial signature: (R∗S∗)∗

2 Apply aggregation step S∗
→ S.

New signature: (R∗S)∗

3 Apply aggregation step R∗
→ R.

New signature: (RS)∗

4 Apply propagation step RS → R.

New signature: R∗

5 Apply aggregation step R∗
→ R.

New signature: R

Example of Probability Computation
x1

y1

y2

x2

x3

y3

0 1

q :- R(A,B), S(A,C)
Vr Vs

x1 y1 + y2
x2 y3
x3 y3

How to proceed?

1 Sort query answer by (Vr ,Vs).

Initial signature: (R∗S∗)∗

2 Apply aggregation step S∗
→ S.

New signature: (R∗S)∗

3 Apply aggregation step R∗
→ R.

New signature: (RS)∗

4 Apply propagation step RS → R.

New signature: R∗

5 Apply aggregation step R∗
→ R.

New signature: R

Example of Probability Computation
x1

y ′

1

x2

x3

y3

0 1

q :- R(A,B), S(A,C)
Vr Vs

x1 y ′

1
x2 y3
x3 y3

How to proceed?

1 Sort query answer by (Vr ,Vs).

Initial signature: (R∗S∗)∗

2 Apply aggregation step S∗
→ S.

New signature: (R∗S)∗

3 Apply aggregation step R∗
→ R.

New signature: (RS)∗

4 Apply propagation step RS → R.

New signature: R∗

5 Apply aggregation step R∗
→ R.

New signature: R

Example of Probability Computation
x1

y ′

1

x2

x3

y3

0 1

q :- R(A,B), S(A,C)
Vr Vs

x1 y ′

1
x2 + x3 y3

How to proceed?

1 Sort query answer by (Vr ,Vs).

Initial signature: (R∗S∗)∗

2 Apply aggregation step S∗
→ S.

New signature: (R∗S)∗

3 Apply aggregation step R∗
→ R.

New signature: (RS)∗

4 Apply propagation step RS → R.

New signature: R∗

5 Apply aggregation step R∗
→ R.

New signature: R

Example of Probability Computation
x1

y ′

1

x ′2

y3

0 1

q :- R(A,B), S(A,C)
Vr Vs

x1 y ′

1
x ′2 y3

How to proceed?

1 Sort query answer by (Vr ,Vs).

Initial signature: (R∗S∗)∗

2 Apply aggregation step S∗
→ S.

New signature: (R∗S)∗

3 Apply aggregation step R∗
→ R.

New signature: (RS)∗

4 Apply propagation step RS → R.

New signature: R∗

5 Apply aggregation step R∗
→ R.

New signature: R

Example of Probability Computation
x1

y ′

1

x ′2

y3

0 1

q :- R(A,B), S(A,C)
Vr

x1y
′

1
x ′2y3

How to proceed?

1 Sort query answer by (Vr ,Vs).

Initial signature: (R∗S∗)∗

2 Apply aggregation step S∗
→ S.

New signature: (R∗S)∗

3 Apply aggregation step R∗
→ R.

New signature: (RS)∗

4 Apply propagation step RS → R.

New signature: R∗

5 Apply aggregation step R∗
→ R.

New signature: R

Example of Probability Computation

x ′′1

x ′′2

0 1

q :- R(A,B), S(A,C)
Vr

x ′′1
x ′′2

How to proceed?

1 Sort query answer by (Vr ,Vs).

Initial signature: (R∗S∗)∗

2 Apply aggregation step S∗
→ S.

New signature: (R∗S)∗

3 Apply aggregation step R∗
→ R.

New signature: (RS)∗

4 Apply propagation step RS → R.

New signature: R∗

5 Apply aggregation step R∗
→ R.

New signature: R

Example of Probability Computation

x ′′1

x ′′2

0 1

q :- R(A,B), S(A,C)
Vr

x ′′1 + x ′′2

How to proceed?

1 Sort query answer by (Vr ,Vs).

Initial signature: (R∗S∗)∗

2 Apply aggregation step S∗
→ S.

New signature: (R∗S)∗

3 Apply aggregation step R∗
→ R.

New signature: (RS)∗

4 Apply propagation step RS → R.

New signature: R∗

5 Apply aggregation step R∗
→ R.

New signature: R

Example of Probability Computation

x ′′′

0 1

q :- R(A,B), S(A,C)
Vr

x ′′′

Return the probability of x ′′′.

How to proceed?

1 Sort query answer by (Vr ,Vs).

Initial signature: (R∗S∗)∗

2 Apply aggregation step S∗
→ S.

New signature: (R∗S)∗

3 Apply aggregation step R∗
→ R.

New signature: (RS)∗

4 Apply propagation step RS → R.

New signature: R∗

5 Apply aggregation step R∗
→ R.

New signature: R

Can we leverage existing results on BDD construction?

Generic AI compilation techniques construct BDDs whose sizes are
exponential in the treewidth of the lineage [Huang&Darwiche01]

Conjunctive queries do generate lineage of unbounded treewidth.
◮ The product query Q :- R(X),S(Y) generates lineage that has a clause for

each pair of random variables of R and S ⇒ unbounded treewidth.

Reconciling the two techniques [Jha,O.&Suciu10]:
◮ Partition input query+data into a tractable subinstance and a (usually much

smaller) hard subinstance.
◮ Tractable subinstance: largest sub-relation satisfying functional dependency
◮ Apply scalable database-specific techniques to the tractable part and generic

AI compilation techniques to the hard part.

Query Optimization: Types of Query Plans

Our previous examples considered lazy plans, where

probability computation done after the computation of answer tuples

unrestricted search space for good query plans

especially desirable when join conditions are selective (eg, TPC-H)!

(Cust∗(Ord∗Item∗)∗)∗

πodate

1ckey,okey

1ckey

σcname=′Joe′

Cust

Ord

σdisc>0

Item

BUT, we can push down probability computation!

Query Optimization: Types of Query Plans

Eager plans discard duplicates and compute probabilities on each temporary table.

(Cust Ord)∗

πodate

1ckey

(Ord Item)∗

πodate,ckey

1ckey,okey

Ord∗

πodate,ckey,okey

Ord

Item∗

πckey,okey

σdisc>0

Item

Cust∗

πckey

σcname=′Joe′

Cust

MystiQ’s safe plans are special cases of eager plans!

mirror the hierarchical structure of the query signature

probability computation restricts join ordering!

suboptimal join ordering, which is more costly than probability computation

Approximate Query Evaluation

Approximate Query Evaluation using Monte Carlo

Using Karp-Luby FPRAS [Karp&Luby83], [Graedel&Gurevitch&Hirsch98]

Input: Boolean formula in DNF φ = C1 + · · ·+ Cm with variables V (φ)

Cnt ← 0; S ← Pr(C1) + · · ·+ Pr(Cm)

repeat N times

randomly choose 1 ≤ i ≤ m with probability Pr(Ci)/S

randomly choose a total valuation λ over V (φ) such that λ(Ci) = true

if ∀1 ≤ j < i : λ(Cj) = false then Cnt = Cnt + 1

P = Cnt/N × S/2|V (φ)|

return P/* ≈ Pr(φ)*/

If N ≥ (1/m)× (4 ln(2/δ)/ǫ2) then Pr [| P/Pr(φ)− 1 |> ǫ] < δ.

Slightly modified algorithms are used in MayBMS, MystiQ, and MCDB.

Veeeery sloooow in practice: SPROUT query plans are about two orders of
magnitude faster that the optimized Monte Carlo.

Approximate Evaluation with SPROUT

Monte Carlo simulations are very powerful and generic

◮ only require sampling the formula, no knowledge of its structure

Why not exploit the structure of the input formula? [O.&HK10]

◮ incrementally compile it into an equivalent decomposed form that allows for
efficient probability computation

◮ in practice, good approximations are obtained after a few decomposition steps
◮ Topic of my ICDE10 talk tomorrow :-)

Thanks!

Literature on Probabilistic Relational Data

Antova, Jansen, Koch, Olteanu. Fast and Simple Relational Processing of

Uncertain Data. ICDE 2008.

Dalvi, Suciu Efficient Query Evaluation on Probabilistic Databases. VLDBJ 2007.

Dalvi, Suciu. The Dichotomy of Conjunctive Queries on Probabilistic Structures.
PODS 2007.

Dalvi, Suciu. Management of Probabilistic Data: Foundations and Challenges.
PODS 2007.

Karp, Luby, Madras. Monte-Carlo Approximation Algorithms for Enumeration

Problems. J. Algorithms 1989.

Olteanu, Huang. Using OBDDs for Efficient Query Evaluation on Probabilistic

Databases. SUM 2008.

Literature on Probabilistic Relational Data

Olteanu, Huang. Secondary-Storage Confidence Computation for Conjunctive

Queries with Inequalities. SIGMOD 2009.

Olteanu, Huang, Koch. SPROUT: Lazy vs. Eager Query Plans for

Tuple-Independent Probabilistic Databases. ICDE 2009.

Olteanu, Huang, Koch. Approximate Confidence Computation in Probabilistic

Databases. ICDE 2010.

Ré, Dalvi, Suciu. Efficient Top-k Query Evaluation on Probabilistic Data. ICDE
2007.

Sen, Deshpande. Representing and Querying Correlated Tuples in Probabilistic

Databases. ICDE 2007.

Valiant. The Complexity of Enumeration and Reliability Problems. SIAM J.
Comput. 1979.

