
On information flow and refinement-closure

Gavin Lowe

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

gavin.lowe@comlab.ox.ac.uk

Abstract. The question of information flow considers whether a high-
level user of a multi-level security system can pass information to a low-
level user. One family of information flow properties is non-deducibility

on compositions: that for all possible high-level behaviours, the low-level
user’s view is the same. Unfortunately, this family suffers from the re-

finement paradox : that a process can be classified as secure, yet a re-
finement can be classified as insecure. In this paper we consider the
property that classifies a process as secure if all of its refinements satisfy
non-deducibility on compositions. This property correctly classifies all
processes for which we have performed thought experiments. The prop-
erty appears, at first sight, very difficult to test automatically, because
of the quantifications over all high-level behaviours and all refinements.
However, we prove that it is equivalent to an operational property, and
hence derive a test that can be carried out using a model checker such
as FDR. We also compare the property with existing properties. We
show that it is stronger than Focardi and Gorrieri’s strong bisimulation
non-deducibility on compositions, but weaker than Roscoe’s lazy inde-
pendence property. Finally we show that the strength of the equivalence
is independent of whether the low-level user’s ability to distinguish pro-
cesses is based upon stable failures or bisimulation.

1 Introduction

The question of information flow is of central importance in theoretical studies
of computer security. In its simplest form, it considers two users, High and Low
interacting with the same computer system, and asks if there is any flow of
information from High to Low; in other words, can Low’s view of the system alter,
depending upon High’s behaviour? This is variously known as noninterference
(can High’s behaviour interfere with Low’s view of the system?), invariance (does
Low’s view of the system vary as a result of High’s behaviour?), non-deducibility
(can Low deduce anything about High’s behaviour?) or independence (is Low’s
view of the system independent of High’s behaviour?).

The normal motivating application for these questions is multi-level security,
where information flows should not occur from a user High with a high level
security clearance to a user Low at a lower security level. Roscoe [Ros97] identifies
two possible scenarios:

– Low is a spy who is trying to find out about High’s behaviour without High’s
knowledge;

– High is a “mole” who is trying to pass information to Low, possibly using
some pre-arranged scheme for representing information.

It turns out that these are subtly different; in this paper, we shall be considering
the latter scenario.

Several authors have attempted to formalise this notion of information flow
using process algebras. Unfortunately, most previous attempts have produced
definitions that appear to be either too weak (failing to identify certain sources
of information flow) or too strong (identifying processes as insecure when there
seems to be no way of using them to pass information). In this paper we consider
a property that we believe overcomes these problems.

We will make use of CSP [Hoa85,Ros97] in this paper; a brief overview of
the syntax and semantics is given in Appendix A. Throughout this paper we
will assume that the system in question is modelled as a divergence-free CSP
process. We partition the alphabet Σ into two sets, H and L, representing the
interfaces of High and Low, ranged over by events h, h′, etc., and l, l′, etc. We
let CSPH be the set of all CSP processes with alphabet H , ranged over by Hi ,
Hi ′, etc.

One family of definitions of information flow is the pioneering work of Focardi
and Gorrieri on non-deducibility on compositions. The idea is that however High
acts, the system should appear the same to Low. This is equivalent to saying
that for all CSP processes Hi ∈ CSPH modelling High’s behaviour, P ‖

H

Hi

and P ‖
H

Stop appear the same from Low’s point of view. Focardi and Gorrieri

have considered three ways of capturing Low’s point of view, corresponding to
different distinguishing powers of Low.

The simplest definition, traces non-deducibility on compositions [FG95], says
that when H is hidden, the two systems should be traces-equivalent:

Definition 1 (TNDC). Process P satisfies traces non-deducibility on compo-
sitions, written TNDC (P), if

∀Hi ∈ CSPH
q (P ‖

H

Hi) \H ≡T P ‖
H

Stop.

For example, the process

Proc1 =̂ h→ l → Stop 2 l → Stop

satisfies this definition, since (Proc1 ‖
H

Hi) \H is equivalent to l → Stop, for all

high-level processes Hi . However, this definition is not suitable if Low can detect
the refusal of events. For example, the process

Proc2 =̂ h→ (l → Stop u Stop) 2 l → Stop

satisfies the property, because the processes l → Stop u Stop and l → Stop are
traces equivalent; yet if Low detects that the event l is not available, he can
deduce that High performed h, so the process should be considered insecure.

The property of bisimulation non-deducibility on compositions [FG95] seeks
to overcome this problem by changing the equivalence to weak bisimulation (see
Definition 8 in Appendix A).

Definition 2 (BNDC). Process P satisfies bisimulation non-deducibility on
compositions, written BNDC (P), if

∀Hi ∈ CSPH
q (P ‖

H

Hi) \H ≈B P ‖
H

Stop.

This definition gives the right result for both of the above examples. However,
we shall see some problems with it below (processes Proc4 and Proc5).

In the rest of this paper we will concentrate on the stable failures model of
CSP [Ros97]. Recall that in this model, a process is represented by its stable
failures, i.e. pairs of the form (tr,X), indicating that the process can perform
the trace tr to reach a stable state (where no internal events are possible) and
where none of the events from X is available.

The fact that refusals are not recorded in unstable states means that in this
model we cannot simply hide H as in the definitions of TNDC and BNDC:
to do so would cause difficulties when Hi can perform an infinite sequence of
consecutive events, such as in the process

Proc3 =̂ h→ Proc3 2 l → Proc3.

High can pass information to Low only by performing an infinite sequence of
h events. It is conventional to not consider such information flow, because it is
reasonable to expect that High is not willing to do an infinite amount of work,
or that the system is fair to Low. If we were to hide H , then this would suggest
a flow of information: Proc3 ‖

H

Stop has the stable failure (〈〉, {l′}) (for l′ 6= l)

whereas (Proc3 ‖
H

RUN(H)) \H does not.

As argued by Roscoe in [Ros97, Chapter 12], it is best to capture Low’s view
of the system by considering the lazy abstraction:

LH(P) =̂ (P ‖
H

Chaos(H)) \H.

Note that we have1

failures(LH (P)) = {(tr |̀ L,X) | (tr,X ∩ L) ∈ failures(P)}.

This leads to the following definition:

Definition 3 (FNDC). Process P satisfies failures non-deducibility on com-
positions, written FNDC (P), if:2

∀Hi ∈ CSPH
q LH(P ‖

H

Hi) ≡F P ‖
H

Stop.

1 tr |̀ L represents the restriction of trace tr to alphabet L.
2 LH(P ‖

H

Stop) = P ‖
H

Stop, so we do not need to take the lazy abstraction of the

right hand side.

(This is equivalent to, but defined in a different way from, Focardi’s definition
from [Foc96].)

The BNDC and FNDC properties correctly classify many processes, particu-
larly deterministic ones. However, they can give misleading results when applied
to some processes exhibiting nondeterminism. For example, consider the follow-
ing process (from [For99,FRR00]):

Proc4 =̂ (h1 → l1 → Proc4 2 h2 → l2 → Proc4) . (l1 → Proc4 u l2 → Proc4).

This process satisfies both BNDC and FNDC: regardless of High’s behaviour,
Low’s view of the system is that it repeatedly offers either l1 or l2. However, this
process should be considered as insecure: High can pass an unbounded amount
of information to Low by performing his events before the timeout; even if High
can perform his events before the timeout only some of the time, this process
acts as an unreliable channel from High to Low, which could be turned into a re-
liable channel using suitable error-correcting codes. In both NDC conditions the
nondeterministic behaviour after the timeout obscures any information passable
by the part of the process before the timeout.

Consider now

Proc5 =̂ h→ (l1 → Stop u l2 → Stop) 2 (l1 → Stop u l2 → Stop).

This process satisfies both BNDC and FNDC: regardless of High’s behaviour,
the system acts like l1 → Stop u l2 → Stop from Low’s point of view. However,
suppose the first nondeterministic choice is always resolved to the left, and the
second nondeterministic choice is always resolved to the right; then the process
acts like h→ l1 → Stop 2 l2 → Stop, which is clearly insecure.

In both of the above examples, the reason the NDC conditions give the wrong
result is the nondeterminism. The NDC conditions suffer from the refinement
paradox, namely that there are processes P that satisfy them, yet there are
refinements Q of P that do not. Nondeterminism arises in models of systems for
two main reasons:

– Often analysis is carried out upon designs of systems, rather than con-
crete implementations. In designs, nondeterminism often represents under-
specification, which is resolved at a subsequent stage of the development.
We should consider a design secure only if all ways of resolving the nonde-
terminism lead to secure implementations.

– Sometimes nondeterminism represents low-level details of a system that one
chooses to abstract away from, e.g. scheduling. In such cases, one should
consider a system secure only if all ways in which that nondeterminism could
be resolved causes the system to behave securely.

We therefore argue that any reasonable definition of information flow should be
closed under refinement. This leads us to the property that we consider through-
out the remainder of this paper, namely the refinement-closure of FNDC:

Definition 4 (RCFNDC). Process P satisfies refinement-closed, failures non-
deducibility on compositions, written RCFNDC (P), if

∀Q w P q FNDC (Q).

For example, the processes Proc4 and Proc5 both fail to satisfy RCFNDC,
because they respectively have refinements

Q4 =̂ (h1 → l1 → Q4 2 h2 → l2 → Q4) . l2 → Q4,

Q5 =̂ h→ l1 → Stop 2 l2 → Stop.

which clearly both fail FNDC.
It is never possible to prove that a definition of information flow is correct:

the best one can do is fail to find problems with it. The RCFNDC condition
gives us the expected result for every thought experiment we have tried so far.

I introduced a property similar to RCFNDC in [Low02], albeit in the context
of a discrete-time model of CSP. In that paper, I considered the quantity of infor-
mation passed from High to Low; I showed that zero information flow reduced
to a property similar to RCFNDC. However, I did not consider the property
further there.

One apparent problem with RCFNDC is that it looks infeasible to test: it ap-
pears that we have to consider every refinement and every high-level behaviour.
Somewhat surprisingly, this is not the case. In the next section we show that
it is equivalent to an operationally-defined property; then in Section 3 we show
how to produce a CSP refinement test —checkable using FDR— based upon the
operational characterisation.

In Section 4 we compare RCFNDC with other information flow properties
from the literature. We show that it lies between Focardi and Gorrieri’s Strong
Bisimulation Non-deducibility on Compositions [FG95], and Roscoe’s Lazy In-
dependence [Ros95]. We also show that the decision to base our property upon
FNDC, as opposed to BNDC, makes no difference: the refinement-closure of
BNDC gives us the same property.

2 Operational noninterference

In this section we define a property based on the operational semantics of a
process, and prove that it is equivalent to RCFNDC.

We use standard operational semantics notation: see Appendix A. We write
inits(P) for the initial visible events of process P :

inits(P) =̂ {a | a ∈ Σ ∧ P (
τ

−→)∗
a

−→ }.

We say that two states are initially L-equivalent if they have the same initial
events from L:

P1 ∼L P2 =̂ inits(P1) ∩ L = inits(P2) ∩ L.

We define our operational property to say that every state P1 reached after a
trace tr containing at least one high-level event should be initially L-equivalent
to every state P2 reached after the L-restriction of that trace (written tr |̀ L):

Definition 5 (ONI). We say that process P satisfies operational noninterfer-
ence, written ONI (P), if

∀P1, P2, tr q P
tr

=⇒ P1 ∧ P
tr|̀L
=⇒ P2 ∧ tr |̀ H 6= 〈〉 ⇒ P1 ∼L P2.

Theorem 1. RCFNDC (P) ⇔ ONI (P).

For convenience, we split the proof into the following lemmas.

Lemma 1. If ¬RCFNDC (P) then ¬ONI (P).

Proof. Suppose

P v Q ∧ Hi ∈ CSPH ∧ LH(Q ‖
H

Hi) 6≡F Q ‖
H

Stop.

We show that ¬ONI (P). We consider two possibilities.

Case 1: (tr,X) ∈ failures(LH (Q ‖
H

Hi)) − failures(Q ‖
H

Stop). Pick a minimal

length such tr, so tr ∈ traces(Q ‖
H

Stop). Both processes can refuse all events

from H , so without loss of generality assume X ⊆ L.
Let tr′ be the corresponding trace of Q ‖

H

Hi , so tr′ |̀ L = tr and (tr′, X) ∈

failures(Q ‖
H

Hi). Then (tr′, X) ∈ failures(Q) since X ⊆ L. Now, P v Q, so

(tr′, X) ∈ failures(P). So for some P1:

P
tr

′

=⇒ P1 ∧ P1 ref X.

We must have tr′ |̀ H 6= 〈〉 (i.e. tr 6= tr′): otherwise we would have (tr,X) ∈
failures(Q ‖

H

Stop), giving a contradiction.

Now, tr ∈ traces(Q ‖
H

Stop), but (tr,X) /∈ failures(Q ‖
H

Stop) so for some

l ∈ X (necessarily l ∈ L) we have tr_〈l〉 ∈ traces(Q ‖
H

Stop). Hence tr_〈l〉 ∈

traces(Q). But P v Q, so tr_〈l〉 ∈ traces(P). So for some P2:

P
tr

=⇒ P2 ∧ l ∈ inits(P2).

Hence P1 6∼L P2, and so ¬ONI (P), as required.

Case 2: (tr,X) ∈ failures(Q ‖
H

Stop) − failures(LH(Q ‖
H

Hi)). Pick a minimal

length such tr, so tr ∈ traces(LH (Q ‖
H

Hi)). Both processes can refuse all events

from H , so without loss of generality assume X ⊆ L.

We have (tr,X) ∈ failures(Q); and P v Q, so (tr,X) ∈ failures(P). Then
for some P2:

P
tr

=⇒ P2 ∧ P2 ref X.

Now, tr ∈ traces(LH (Q ‖
H

Hi)), but (tr,X) /∈ failures(LH(Q ‖
H

Hi)), so for

some l ∈ X (necessarily l ∈ L) we have tr_〈l〉 ∈ traces(LH(Q ‖
H

Hi)). Let

tr′_〈l〉 be the corresponding trace of Q ‖
H

Hi , so tr′ |̀ L = tr. Then tr′_〈l〉 is also

a trace of Q, and hence of P . So for some P1:

P
tr

′

=⇒ P1 ∧ l ∈ inits(P1).

Hence P1 6∼L P2.
Finally, we must have tr′ |̀ H 6= 〈〉 (i.e. tr 6= tr′): otherwise we would have

(tr′, X) ∈ failures(Q), and (tr,X) ∈ failures(LH (Q ‖
H

Hi)), giving a contradic-

tion. Hence ¬ONI (P), as required.

Lemma 2. If ¬ONI (P) then ¬RCFNDC (P).

Proof. By the assumptions of the lemma, there are P1, P2 and tr such that

P
tr

=⇒ P1, P
tr|̀L
=⇒ P2, tr |̀ H 6= 〈〉, P1 6∼L P2.

Let Hi be a process that performs tr |̀ H . We do a case analysis on the cause of
P1 6∼L P2:

Case 1: l ∈ inits(P1)− inits(P2) for some l ∈ L. Then (tr |̀L, {l}) ∈ failures(P).
Let

F1 =̂ failures(P) − {(tr |̀ L_〈l〉_tr′, X) | tr′ ∈ Σ∗, X ⊆ Σ}
− {(tr |̀ L,X) | (tr |̀ L,X ∪ {l}) /∈ failures(P)}.

In Appendix B we show that there is a process Q with failures(Q) = F1.
3 This

construction forces Q to behave like P , except any nondeterministic branch
leading to the trace tr |̀ L_〈l〉 is removed. Clearly P v Q.

Now tr_〈l〉 ∈ traces(P), so by construction, tr_〈l〉 ∈ traces(Q) (since tr 6=
tr |̀ L), so tr_〈l〉 ∈ traces(Q ‖

H

Hi); hence

tr |̀ L_〈l〉 ∈ traces(LH (Q ‖
H

Hi)).

But tr |̀ L_〈l〉 /∈ traces(Q), so

tr |̀ L_〈l〉 /∈ traces(Q ‖
H

Stop).

3 We relegate this proof to the appendix, because it uses a technical result not relevant
to the rest of this paper.

Hence LH(Q ‖
H

Hi) 6≡F Q ‖
H

Stop, as required.

Case 2: l ∈ inits(P2) − inits(P1) for some l ∈ L. Then tr |̀ L_〈l〉 ∈ traces(P).
Let

F2 =̂ failures(P) − {(tr |̀ L,X) | l ∈ X ⊆ Σ}.

In Appendix B we show that there is a process Q with failures(Q) = F2. Clearly
P v Q.

Now, (tr, {l}) ∈ failures(P), so by construction (tr, {l}) ∈ failures(Q) (since
tr 6= tr |̀ L); and (tr |̀ H, {}) ∈ failures(Hi), so (tr, {l}) ∈ failures(Q ‖

H

Hi); hence

(tr |̀ L, {l}) ∈ failures(LH(Q ‖
H

Hi)).

But (tr |̀ L, {l}) /∈ failures(Q), so

(tr |̀ L, {l}) /∈ failures(Q ‖
H

Stop).

Hence LH(Q ‖
H

Hi) 6≡F Q ‖
H

Stop, as required.

3 Testing for RCFNDC

In this section we show how to test whether a process P satisfies RCFNDC using
the model checker FDR. Following Theorem 1, we need to test whether ONI (P).

Our approach closely follows Roscoe’s test for determinism from [Ros05],
which is in turn based upon Lazić’s test from [Laz99]. The idea is to run two
copies of P within a testing harness, so that they evolve together to processes P1

and P2 such that for some trace tr

P
tr

=⇒ P1 ∧ P
tr|̀L
=⇒ P2.

Following the definition of ONI, in each such state, we need to check that if an
event from H has occurred, then P1 and P2 can perform the same events from L.

Let clunk be a new event, not in H ∪ L. Define

Clunk1 = ?l : L→ clunk → Clunk1 2 ?h : H → Clunk1,

Clunk2 = ?l : L→ clunk → Clunk2,

Repeat = ?l : L→ l → Repeat,

Harness(P) =

((
(Clunk1 ‖

H∪L

P) ‖
{clunk}

(Clunk2 ‖
H∪L

P)
)
‖
L

Repeat

)
\ {clunk}.

Within this harness, the two copies of P are forced to each perform the same
L events; the left-hand P may also perform H events. The effect of the Clunk1
and Clunk2 processes, synchronising on clunk, is to ensure that each P performs

at most one L event more than the other; the effect of the Repeat process is to
ensure that they perform the same event.

To see if ONI (P) holds, we want to check that, once an H event has been
performed, if one copy of P performs an event l ∈ L, then the other can also
perform l. This can be achieved by testing whether Spec1 v Harness(P), where

Spec1 = $l : L→ Spec2(l) u $h : H → Spec3 u Stop,

Spec2(l) = l → Spec1 u $h : H → Spec4(l) u Stop,

Spec3 = $l : L→ Spec4(l) u $h : H → Spec3 u Stop,

Spec4(l) = $h : H → Spec4(l) . l → Spec3.

In the states Spec2(l) and Spec4(l), the next L event will be l. The states Spec3
and Spec4(l) are reached when there has been at least one H event. Note that in
state Spec2(l), the l might not be available: the process may perform an H event
or deadlock. However, in the state Spec4(l), the l must be available (although H
events may also be available).

If P has N states, then Harness(P) has O(N 2) states, since it runs two copies
of P . However, in most cases, for each state of the first copy of P , there will be
a fairly small number of states that the second copy of P can be in at the same
time; if this number is bounded by some constant k, then the total number of
states is O(k.N), so checking is linear in the size of P .

4 Comparisons

In this section we compare the strength of RCFNDC with other noninterference
properties from the literature. The results are summarised in Fig. 1. We do not
have enough space to describe all the properties of Fig. 1; we give references for
those we do not define. We also show that the refinement-closures of most of the
properties in Fig. 1 coincide, and consider the relationship with separability.

4.1 Comparison with strong BNDC

In [FG95], Focardi and Gorrieri introduced a property called strong bisimulation
non-deducibility on compositions. Forster independently introduced it in [For99],
and called it strong local noninterference.

Definition 6 (SBNDC). P satisfies strong bisimulation non-deducibility on

compositions, written SBNDC (P), if, whenever P
tr

=⇒ Q
h

−→ R with h ∈ H, we
have Q ‖

H

Stop ≈B R ‖
H

Stop.

Theorem 2. For all processes P , RCFNDC (P) implies SBNDC (P).

Proof. Suppose RCFNDC (P). Following the definition of SBNDC , suppose

P
tr

=⇒ Q
h

−→ R. Let

B =̂ {(Q′, R′) | ∃ tr′ q Q ‖
H

Stop
tr

′

=⇒ Q′ ∧ R ‖
H

Stop
tr

′

=⇒ R′}.

@
@

@
@

�
�

�
�

�
�

�
�

�
�

�
�

@
@

@
@

@
@

@
@

�
�

�
�

TSNNI = TNDC [FG95]

FSNNI [Foc96]

FNDCBSNNI [FG95]

BNDC SFSNNI [Foc96]

SBSNNI [FGP95]

[FGP95]

[Foc96]

[Foc96]

[FG95]

[Foc96]

[Foc96]

[Foc96]

LNI [For99]

[For99]

SBNDC = SLNI

[For99]

RCFNDC

LIND

Fig. 1. The relative strengths of the properties.

We will show that B is a bisimulation. Since (Q ‖
H

Stop,R ‖
H

Stop) ∈ B, this will

show that Q ‖
H

Stop ≈B R ‖
H

Stop, and we will be done.

So, pick (Q′, R′) ∈ B, and let tr′ be the corresponding trace (as in the

definition of B), so P
tr

_

tr
′

=⇒ Q′, P
tr

_

〈h〉
_

tr
′

=⇒ R′, and tr′ |̀ H = 〈〉. We claim that

there is a process P̂ such that P
(tr

_

tr
′)|̀L

=⇒ P̂ ∧ P̂ ∼L Q
′. If tr |̀H = 〈〉 then we can

simply take P̂ = Q′. Otherwise, tr_tr′ ∈ traces(P); and P satisfies RCFNDC
and hence TNDC, and so (tr_tr′) |̀ L ∈ traces(P). Let P̂ be any process such

that P
(tr

_

tr
′)|̀L

=⇒ P̂ ; then the ONI characterisation of RCFNDC gives us that

P̂ ∼L Q
′. Now, P

tr
_

〈h〉
_

tr
′

=⇒ R′, and (tr_〈h〉_tr′) |̀ L = (tr_tr′) |̀ L, so we
have that P̂ ∼L R′, again by the ONI characterisation of RCFNDC. Hence, by
transitivity of ∼L, we have Q′ ∼L R′.

Following the definition of bisimulation, suppose Q′ l
−→ Q′′ with l ∈ L. Then

by definition of ∼L, l ∈ inits(R′)∩L, so there is some R′′ such that R′ 〈l〉
=⇒ R′′.

But then

Q ‖
H

Stop
tr

′_

〈l〉
=⇒ Q′′ and R ‖

H

Stop
tr

′_

〈l〉
=⇒ R′′

so (Q′′, R′′) ∈ B. Likewise, if Q′ τ
−→ Q′′, then taking R′′ = R′, we have

R′(
τ

−→)∗R′′, and (Q′′, R′′) ∈ B. The vice versa conditions are identical.

RCFNDC is strictly stronger than SBNDC, as shown by Proc5 from the
Introduction:

Proc5 =̂ h→ (l1 → Stop u l2 → Stop) 2 (l1 → Stop u l2 → Stop).

As argued earlier, this does not satisfy RCFNDC. However, it is easy to see that
it satisfies SBNDC.

4.2 Comparison with lazy independence

Roscoe introduced the notion of lazy independence in [Ros95]; the form we give
here is from [Ros97, Section 12.4].

Definition 7 (Lazy independence). A process P is lazily independent, writ-
ten LIND(P), if LH(P) is deterministic.

The following lemma relates lazy independence to an operational property,
similar in style to ONI.

Lemma 3. If LIND(P) then

∀P1, P2, tr1, tr2 q P
tr1=⇒ P1 ∧ P

tr2=⇒ P2 ∧ tr1 |̀ L = tr2 |̀ L⇒ P1 ∼L P2.

Proof. We prove the contra-positive. Suppose

P
tr1=⇒ P1 ∧ P

tr2=⇒ P2 ∧ tr1 |̀ L = tr2 |̀ L ∧ P1 6∼L P2.

Then, without loss of generality there is some l ∈ L such that l ∈ inits(P1)
and l /∈ inits(P2). But then tr1 |̀ L_〈l〉 ∈ traces(LH (P)) and (tr1 |̀ L, {l}) ∈
failures(LH(P)). So LH(P) is nondeterministic.

Theorem 3. LIND(P) implies RCFNDC (P).

Proof. The theorem follows immediately from the previous lemma, noting that
the property there implies ONI.

The property LIND is strictly stronger than RCFNDC, since the former
is failed by processes that exhibit nondeterminism to Low, even when that
nondeterminism cannot be affected by High’s behaviour, such as l1 → Stop u
l2 → Stop.

Theorem 3 and the operational property identified in Lemma 3 help to shed
light on the difference between the properties: lazy independence fails processes
whenever Low’s view is nondeterministic; RCFNDC fails processes whenever
Low’s view is nondeterministic with High performing an event on one of the
traces leading to that nondeterminism.

4.3 Refinement-closure of other properties

We now show that the refinement-closures of most of the properties from Fig. 1
agree with RCFNDC. We can define the refinement-closure of property φ as
follows:

RC (φ)(P) =̂ ∀Q w P q φ(Q).

So, in particular RCFNDC = RC (FNDC).

Theorem 4. If φ is any property such that RCFNDC ⇒ φ ⇒ FNDC , then
RC (φ) ≡ RCFNDC.

Proof. Note that RC is monotonic: φ ⇒ ψ implies RC (φ) ⇒ RC(ψ). Hence we
have

RCFNDC ≡ RC (RCFNDC) ⇒ RC (φ) ⇒ RC (FNDC) ≡ RCFNDC .

In particular, this means that the refinement-closure of BNDC coincides with
RCFNDC. This is important as it means that it doesn’t matter whether Low is
able to distinguish processes on the basis of bisimulation or failures: the same
processes are secure in either case.

The refinement-closure of BNDC looks like a slightly odd property, since it
combines failures and bisimulation semantics, which do not normally sit well
together. However, the two semantics are used for different purposes in the def-
inition: the failures semantics is used to describe the refinement of a system’s
design or abstract model to an implementation; and the bisimulation semantics
is used to describe the interaction of Low with that final implementation; it is
not unreasonable that different semantics should be appropriate for these two
purposes. One could consider a number of related properties, with both differ-
ent notions of refinement and different notions of Low’s distinguishing power: it
would be interesting to ask whether these vary in strength.

4.4 Separability

A process P is said to be separable if it is equivalent to Hi ||| Lo where Hi and
Lo have alphabets H and L, respectively. Separability does not imply RCFNDC.
For example,

Proc6 =̂ (l1 → Stop u l2 → Stop) ||| h→ Stop

does not satisfy RCFNDC, since it is refined by l1 → h → Stop 2 h → l2 →
Stop, which clearly doesn’t satisfy FNDC.

Whether Proc6 should be considered secure depends upon how one views a
CSP model of a process. If the process really is built as an interleaving, as above,
then it is reasonable to suppose that there is no flow of information. However, the
normal philosophy is that a CSP model captures the allowable behaviours of the
process, rather than necessarily describing how it is constructed; in such a case,

if the process could be constructed in an insecure way, it should be considered
insecure.

It is well known that separability is a rather strong property, since it is sym-
metric in H and L. Therefore there are many processes that are not separable,
yet should be considered secure: a simple example is l → h→ Stop, which is not
separable, yet satisfies all the properties of Fig. 1.

5 Related work

In [Man01], Mantel considers the same problem as us. However, rather than con-
sidering an information flow property that is closed under refinement, he consid-
ers how to restrict the refinement relation such that information flow properties
are preserved. In particular, he produces a restriction of trace refinement that
preserves the so-called perfect security property [ZL97].

Bossi et al. [BFPR03] and Alur et al. [ACZ06] take similar approaches. They
each give sufficient conditions for particular refinements (using different notions
of refinement from that in the current paper) to preserve various information
flow properties based on NDC and secrecy of properties of runs, respectively.

Acknowledgements

I would like to thank Bill Roscoe, Michael Goldsmith, Tomasz Mazur, Toby
Murray and the anonymous referees for useful comments on this work.

References

[ACZ06] Rajeev Alur, Pavol Cerny, and Steve Zdancewic. Preserving secrecy under
refinement. In 33rd International Colloquium on Automata, Languages, and

Programming, 2006.
[BFPR03] Annalisa Bossi, Riccardo Focardi, Carla Piazza, and Sabina Rossi. Refine-

ment operators and information flow security. In Proccedings of the IEEE In-

ternational Conference on Software Engineering and Formal Methods, pages
44–53, 2003.

[FG95] Riccardo Focardi and Roberto Gorrieri. A classification of security proper-
ties. Journal of Computer Security, 1995.

[FGP95] R. Forcardi, R. Gorrieri, and V. Panini. The security checker: A semantics-
based tool for the verification of security properties. In Proceedings of the

8th IEEE Computer Security Foundations Workshop, pages 60–69, 1995.
[Foc96] Riccardo Focardi. Comparing two information flow security properties. In

Proceedings of 9th IEEE Computer Security Foundations Workshop, pages
116–122, 1996.

[For99] Richard Forster. Non-Interference Properties for Nondeterministic Pro-

cesses. D.Phil, Oxford University, 1999. Available from http://www.comlab.

ox.ac.uk/oucl/research/areas/concurrency/papers/thesis.ps.gz.
[FRR00] R. Forster, G. M. Reed, and A. W. Roscoe. Millennial Perspectives in Com-

puter Science, chapter The successes and failures of behavioural models.
Palgrave, 2000.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
[Laz99] Ranko Lazić. A Semantic Study of Data Independence with Applications to

Model Checking. D.Phil., Oxford University, 1999.
[Low02] Gavin Lowe. Quantifying information flow. In Proceedings of the 15th IEEE

Computer Security Foundations Workshop, pages 18–31, 2002.
[Man01] Heiko Mantel. Preserving information flow properties under refinement. In

Proccedings of the IEEE Symposium on Security and Privacy, pages 78–91,
2001.

[Ros95] A. W. Roscoe. CSP and determinism in security modelling. In Proceedings

of 1995 IEEE Symposium on Security and Privacy, 1995.
[Ros97] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall,

1997.
[Ros05] A. W. Roscoe. On the expressive power of CSP refinement. Formal Aspects

of Computing, 17(2):93–112, 2005.
[ZL97] Aris Zakinthinos and E. S. Lee. A general theory of security properties. In

Proccedings of the IEEE Symposium on Security and Privacy, pages 94–102,
1997.

A A brief overview of CSP

In this appendix we give a brief overview of CSP. More details can be obtained
from [Hoa85,Ros97].

Syntax An event represents an atomic communication; this might either be
between two processes or between a process and the environment. We write Σ
for the set of all visible events. The event τ represents an internal event; we
define Στ =̂ Σ ∪ {τ}.

The process Stop can perform no events. The process a→ P can perform the
event a, and then act like P . The process ?a : A → Pa offers the set of events A;
if a particular event a is performed, the process then acts like Pa. (The prefixing
operator “→” binds tighter than all other operators.)

The process P 2 Q represents an external choice between P and Q; the ini-
tial events of both processes are offered to the environment; when an event is
performed, that resolves the choice. P u Q represents an internal or nondeter-
ministic choice between P and Q; the process can act like either P or Q, with the
choice being made according to some criteria that we do not model. $a : A→ Pa

is the process that nondeterministically chooses an event a from A, performs it,
and then acts like Pa. The process P . Q acts like a timeout: it initially acts
like P , but if no event of P is performed then a timeout occurs and the process
acts like Q.

The process RUN(A) can perform any events from A, and never refuse any
such events. The process Chaos(A) is the most nondeterministic, nondivergent
process with alphabet A; it can perform any sequence of events from A, and
refuse any events.

P ‖
A

Q represents the parallel composition of P andQ, synchronising on events

from A. P ||| Q represents an interleaving of the processes P and Q; i.e. parallel

composition without any synchronisation. P \ A acts like P , except all events
from the set A are hidden, i.e. made internal.

Operational semantics We use standard notation for operational semantics. We
write P

a
−→ Q to represent that P can perform the event a ∈ Στ and become Q.

We write P
tr

=⇒ Q to represent that P can perform the trace tr ∈ Σ∗ of visible
events and become Q. We write P ref X to indicate that P can refuse X : it
is a stable state, i.e. where no internal transitions are possible, and it cannot
perform any event from X .

We remind the reader of the definition of a weak bisimulation:

Definition 8 (Weak bisimulation). A weak bisimulation is a binary rela-
tion B such that for all (P,Q) ∈ B:

– If P
x

−→ P ′ with x ∈ Σ, then ∃Q′ q Q
〈x〉
=⇒ Q′ ∧ (P ′, Q′) ∈ B;

– If P
τ

−→ P ′, then ∃Q′
q Q(

τ
−→)∗Q′ ∧ (P ′, Q′) ∈ B;

– If Q
x

−→ Q′ with x ∈ Σ, then ∃P ′ q P
〈x〉
=⇒ P ′ ∧ (P ′, Q′) ∈ B;

– If Q
τ

−→ Q′, then ∃P ′
q P (

τ
−→)∗P ′ ∧ (P ′, Q′) ∈ B.

We say that P and Q are bisimilar, written P ≈B Q, if there exist a weak
bisimulation that contains (P,Q).

Denotational semantics A trace of a process is a sequence of visible events
that a process can perform. A stable failure of a process is a pair (tr,X) ∈
Σ∗ × PΣ, such that the process can perform the trace tr and then refuse X ,

i.e., for some P ′, P
tr

=⇒ P ′ ∧ P ′ ref X . The stable failures model represents a
process by its traces T and stable failures F . For divergence-free processes, they
are related by T = traces(F) = {tr | (tr,X) ∈ F}. T and F satisfy the following
axioms:

F1. T is non-empty and prefix-closed.
F2. (s,X) ∈ F ∧ Y ⊆ X ⇒ (s, Y) ∈ F .
F3. (s,X) ∈ F ∧ s_〈a〉 /∈ traces(P) ⇒ (s,X ∪ {a}) ∈ F .

The traces and stable failures of a process can either be extracted from the
operational semantics, or calculated using rules for each operator. We need the
following two rules in this paper: if the alphabet of Q is a subset of A, then

failures(P ‖
A

Q) =

{(tr,X ∪ Y) | (tr,X) ∈ failures(P) ∧ (tr |̀ A, Y) ∈ failures(Q)};

and

failures(P \A) = {(tr |̀ (Σ −A), X) | (tr,X ∪ A) ∈ failures(P)}.

We say that P is refined by Q, written P v Q if traces(P) ⊇ traces(Q) ∧
failures(P) ⊇ failures(Q).

B Proofs from Section 2

In this appendix we show that processes exist that have the failures F1 and F2,
as defined in Lemma 2. We will need the following result from [Ros97, Section
9.3]:

Theorem 5. For any choice of F ∈ PΣ such that the axioms F1, F2, F3 (see
Appendix A) are satisfied, there is a CSP process Q such that failures(Q) = F .

Hence it will be enough to show that F1 and F2 satisfy the axioms.

Lemma 4. F1 and F2, as defined in Lemma 2, satisfy the axioms of the stable
failures model.

Proof. Recall that failures(P) satisfies the axioms.
Consider first F1. Note that

traces(F1) = traces(P) − {(tr |̀ L_〈l〉_tr′ | tr′ ∈ Σ∗}.

We prove each axiom in turn.

– F1 is satisfied since traces(P) satisfies it, and the set of traces removed is
postfix-closed.

– F2 is satisfied since failures(P) satisfies it, and the refusals removed are
superset closed.

– For F3, suppose (s,X) ∈ F1 and s_〈a〉 /∈ traces(F1).
If s = tr |̀ L and a = l, then by construction of F1 we have (s,X ∪ {l}) ∈
failures(P); and so (s,X ∪ {l}) ∈ F1, again by construction.
In all other cases, we have s_〈a〉 /∈ traces(P), so (s,X ∪ {a}) ∈ failures(P),
since failures(P) satisfies F3. If s 6= tr |̀ L then (s,X ∪ {a}) ∈ F1 by con-
struction. If s = tr |̀ L then from (s,X) ∈ F1 and the construction of F1 we
have (s,X ∪ {l}) ∈ failures(P); so (s,X ∪ {a, l}) ∈ failures(P), again since
failures(P) satisfies F3; hence (s,X ∪ {a}) ∈ F1 by construction.

Now consider F2. Recall that tr |̀ L_〈l〉 ∈ traces(P). Note that traces(F2) =
traces(P).

– F1 is satisfied since traces(P) satisfies it.
– F2 is satisfied since failures(P) satisfies it, and the refusals removed are

superset closed.
– For F3, suppose (s,X) ∈ F2 and s_〈a〉 /∈ traces(F2) = traces(P). Then

(s,X) ∈ failures(P) and so (s,X ∪ {a}) ∈ failures(P) since failures(P)
satisfies F3.
If s 6= tr |̀ L then (s,X ∪ {a}) ∈ F2 by construction.
If s = tr |̀ L then a 6= l since tr |̀ L_〈l〉 ∈ traces(P). Also, since (s,X) ∈ F2

we have l /∈ X by construction of F2. Hence l /∈ X∪{a} so (s,X∪{a}) ∈ F2,
by construction.

