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Abstract Semi-synchronously rational relations generalise synchronised rational rela-

tions in a natural way. We discuss here some of their basic properties, among them a

”Cobham-Semenov-like” dichotomy theorem. Our main result is a characterisation of

bijective semi-synchronously rational transductions as those bijections mapping regular

relations to regular ones and non-regular relations to non-regular ones.
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1 Introduction

A relation on words is semi-synchronously rational if it is accepted by an asynchronous

multi-tape finite automaton processing each tape at a prescribed pace. Semi-synchronously

rational relations thus constitute a natural generalisation of the synchronised rational

relations studied in [9]. The notion is briefly mentioned in [17] but only to raise a very

natural question, which was subsequently answered independently in [1] and in [7].

This result showing that, except in trivial cases, the relative speed of reading individ-

ual tapes is uniquely determined, is presented here in Theorem 1.

In the context of symbolic dynamics semi-synchronous (sequential) transductions

(on (bi-)infinite words) are natural devices in transforming dynamical systems [3]. Our

initial interest stems from the world of automatic presentations, where our main result,

Theorem 2, spells out that bijective semi-synchronous transductions (on finite words)

are the natural model of translations among equivalent automatic presentations of

infinite structures [1].
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In [11] Maurer and Nivat studied bijective rational transductions. They have shown

that there is a rational bijection between two regular languages if and only if these have

the same asymptotic growth: either both are exponentially growing or both grow at a

polynomial rate of the same degree or both of them are finite and of the same size.

Recently, Béal, Lombardy, and Sakarovitch [2] proved that there is always a letter-

to-letter rational bijection between any two regular languages having exactly the same

number of elements of every length.

While growth arguments do play a key role in our analysis, we present here a charac-

terisation of semi-synchronously rational bijections primarily in terms of preservation

of regularity of relations. This is an essential distinction from works on regularity-

preserving [14] or continuous transductions [15] that are concerned with mappings of

words preserving the regularity of languages, i.e. unary relations, under taking images

or pre-images.

In the course of our investigation we make two further observations along these lines.

Proposition 4 and Theorem 3 assert that every bijective transduction that maps every

regular binary relation to a regular one is in fact semi-synchronously rational, provided

that it is length-preserving (in which case it is synchronised rational), respectively, that

its domain is a regular language of exponential density.

2 Semi-synchronously rational relations

Let Σ be a finite alphabet. The length of a word w ∈ Σ∗ is denoted by |w|, the empty

word by ε, and for each 0 < i ≤ |w| the ith symbol of w is written as w[i]. We consider

relations on words, i.e. subsets R of (Σ∗)n for some n > 0. Asynchronous n-tape

automata accept precisely the rational relations, i.e., rational subsets of the product

monoid (Σ∗)n. Finite transducers are asynchronous 2-tape automata and the relations

they recognise are commonly referred to as rational transductions [4]. A relation R ⊆
(Σ∗)n is synchronised rational [9], or simply regular, if it is accepted by a synchronous

n-tape automaton. We introduce the following generalisation.

Definition 1 (Semi-synchronously rational relations)

Let � be a special end-marker symbol, � 6∈ Σ, and Σ� = Σ ∪ {�}. Further let

α = (a1, . . . , an) be a vector of positive integers and consider a relation R ⊆ (Σ∗)n.

The α-convolution of R is the set �αR = { (w1�m1 , . . . , wn�mn) | (w1, . . . , wn) ∈ R
and the mi are minimal such that there is a k with kai = |wi|+mi for every i}. This

allows us to identify �αR with a subset of the monoid ((Σ�)a1 × · · · × (Σ�)an)∗. If

�αR thus corresponds to a regular set, then we say that R is α-synchronously rational,

or just α-synchronous. Finally, R is semi-synchronous if it is α-synchronous for some

α.

Intuitively, our definition expresses that although R requires an asynchronous au-

tomaton to accept it, synchronicity can be regained when processing words in blocks,

the size of which are component-wise fixed by α. As a special case, for α = 1, we obtain

the regular relations.

Example 1 Consider R = {(an, a2n+1) | n ∈ N}. While R is not synchronised rational,

�(1,2)R = (a, aa)∗(�, a�) is. Hence, R is (1, 2)-synchronous.

Also note that for every α = (a1, . . . , an) the convolution �α ((Σ∗)n) is the regular

subset of ((Σ�)a1 × · · · × (Σ�)an)∗ of all words whose end markers are lined up at the

end of each component consistently with Definition 1.



3

Recall that a relation R ⊆ (Σ∗)n is recognisable if it is saturated by a congruence

(of the product monoid (Σ∗)n) of finite index, equivalently, if it is a finite union of

direct products of regular languages [9]. We denote by Rat, SRat, SαRat, Reg, Rec the

classes of rational, semi-synchronous, α-synchronous, regular, and recognisable rela-

tions respectively.

It is a straightforward consequence of the definition that for any fixed α the class

of α-synchronously rational relations has all the convenient properties of synchronised

rational relations.

Proposition 1 SαRat is an effective boolean algebra for each α. The projection of

every αβ-synchronous relation onto the first |α| many components, is α-synchronous.

Proof One applies the classical automata constructions for taking products, determin-

ising and complementing finite automata over the alphabet (Σ�)a1 × · · · × (Σ�)an .

For sound treatment of the end-markers complements have to be taken relative to the

regular domain �α ((Σ∗)n) of those words actually representing the convolution of

some tuple. ut

Proposition 2 For every vector α of non-negative integers, SαRat is closed under

taking images (hence also inverse images) via semi-synchronous transductions.

Proof Let T be a (p, q)-synchronous transduction, R an α-synchronous n-ary relation

with α = (a1, . . . , an). Then T (R) = {v | ∃u ∈ R, ∀i ≤ n : (ui, vi) ∈ T} is the pro-

jection of the (qa1, . . . , qan, pa1, . . . , pan)-synchronous relation {(v,u) | u ∈ R, ∀i ≤
n : (ui, vi) ∈ T}. Therefore, by Proposition 1, T (R) is (qa1, . . . , qan)-synchronously

rational, hence also α-synchronously rational (cf. Theorem 1(i) below). Closure under

taking inverse images follows from the fact that the inverse of a (p, q)-synchronous

transduction is (q, p)-synchronous. ut

Observe that the composition of a (p, q)-synchronous and an (r, s)-synchronous

transduction is (pr, qs)-synchronous, thus, the class of semi-synchronous transductions

is closed under composition.

Next we show that for (p, q)-synchronously rational transductions, with the ex-

ception of recognisable transductions, the ratio p/q is uniquely determined. This is a

crucial property that can be helpful in showing that certain relations are not semi-

synchronous.

To this end let us say that α and β are dependent if k · α = l · β for some k, l ∈ N,

where multiplication is meant component-wise. Then, comparing classes SαRat and

SβRat we observe the following “Cobham-Semenov-like” relationship. Theorem 1 pro-

vides solution to [17, Probléme 6.3] and has been independently proved by the author

[1] and by Carton [7].

Theorem 1 Let n, p, q ∈ N and α,β ∈ Nn.

(i) If α and β are dependent, then SαRat = SβRat.

(ii) If (p, q) and (r, s) are independent, then S(p,q)Rat
T

S(r,s)Rat = Rec.

Proof

(i) Clearly, a relation R is α-synchronous if and only if it is (k · α)-synchronous for

any k ≥ 1. The claim follows.

(ii) Recognisable relations are trivially α-synchronous for any α, therefore we only

care for the other inclusion.
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Let R ∈ S(p,q)Rat
T

S(r,s)Rat. We need to show that R is a finite union of Cartesian

products Ai × Bi of regular languages. Consider the following equivalence relation on

words in the domain of R:

x ∼ x′ def⇐⇒ ∀y : R(x, y)↔ R(x′, y)

By Proposition 1 this is a regular relation. Each equivalence class [x] is therefore a

regular language. Similarly, for every x the set xR = {y | (x, y) ∈ R} is regular.

Hence, R is of the (irreducible) form
Sr
i=1Ai × Bi if and only if there are precisely r

equivalence classes [x1], . . . , [xr] modulo ∼, in which case Ai = [xi] and Bi = xiR for

1 ≤ i ≤ r.
According to (i), R is both (pr, qr)- and (pr, ps)-synchronous, and by assumption

ps 6= qr, wlog. ps < qr. Let us further assume for simplicity and wlog. that pr = 1 and

let k = ps and l = qr. Consider some FDA’s A and A′ recognising �(1,k)R and �(1,l)R,

respectively. As transducers, A is thus “slower” then A′ in reading the second tape.

Let C = |A|2 + 1, where |A| is the number of states of A. The following observation is

confirmed by a straightforward pumping argument:

x 6∼ x′ ⇒ ∃y : |y| < k(max(|x|, |x′|) + C) ∧R(x, y)↔ ¬R(x′, y) (∗)

The syntactic congruence of A′ induces an equivalence of finite index on pairs of

words (u, z) ∈ (Σ ∪ {�} × (Γ ∪ {�})l)∗, i.e. (u, z) ≈A′ (u′, z′) iff their actions on the

states of A′ are identical. Let K be the length of the longest word v such that (v,�l|v|)
is the shortest such representant of its ≈A′ -class.

Consider now any x long enough such that d(|x| + C)kl e + K < |x|. During the

run of A′ on input (x, y) for any y shorter than k(|x|+ C), y will be completely read

leaving a suffix v of x, v longer than K, unread. By replacing v with a shorter v′ such

that (v,�l|v|) ≈A′ (v′,�l|v
′|) in x we obtain an x′ shorter than x, such that, by (*),

x ∼ x′. Thus we have shown that each ∼-class has a representant of bounded size, i.e.

that there are finitely many such classes as required. ut

In [9, Theorem 5.1] it has been established that Rec ( Reg ( DRat ( Rat, where

DRat refers to the class of deterministic rational relations. All regular relations are eas-

ily seen to be deterministic rational [9, Prop. 5.2] and this naturally extends to semi-

synchronously rational relations. By definition, for every R ∈ SαRat its α-convolution

�αR is a regular language, which can thus be accepted by a DFA. It is then straight-

forward to transform this DFA into a deterministic transducer accepting R. Hence

we have that Reg ⊂ SRat ⊂ DRat. In fact, both inclusions are strict: the relation

{(an, a2n) | n ∈ N} is evidently (1, 2)-synchronous but not (1, 1)-synchronously ratio-

nal, and we have the following corollary of Theorem 1.

Corollary 1 The relation {(an, a2n), (bn, b3n) | n ∈ N} is deterministic rational but

not semi-synchronous. Hence SRat ( DRat and SRat is not closed under union.

Proof Let Ra = {(an, a2n) | n ∈ N} and Rb = {(bn, b3n) | n ∈ N}. These are

(1, 2)-synchronously rational and (1, 3)-synchronously rational, respectively, and their

union R is obviously deterministic rational. Assuming R to be (p, q)-synchronous both

Ra = R ∩ a∗ × a∗ and Rb = R ∩ b∗ × b∗ would also have to be (p, q)-synchronous by

Proposition 1. However, since neither Ra nor Rb is recognisable, according to Theo-

rem 1 we would have 1/2 = p/q = 1/3, which is impossible. ut
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The problem of whether a given rational relation is synchronised rational is known

to be undecidable [4,9]. Simple reductions show that the same holds true for the ques-

tion of semi-synchronicity.

Proposition 3 For any given p, q ∈ N the following problems are undecidable.

(i) Given a rational transduction R ∈ Rat is R ∈ S(p,q)Rat?

(ii) Given a rational transduction R ∈ Rat is R ∈ SRat?

Proof Problem (i) is equivalent to the problem of deciding regularity of rational rela-

tions over the alphabet (Σp� ×Σ
q
�) that is known to be undecidable [4,9].

To prove (ii) consider the following reduction.1 Given a rational transduction R ⊆
(Σ∗)2 let R′ = R ] R−1 where R−1 is understood to be over a disjoint copy of Σ.

Clearly, if R is regular, then so is R′. Conversely, if R′ is (p, q)-synchronously rational

then, by Proposition 1, both R = R′ ∩ (Σ∗ × Σ∗) and, similarly, R−1 are (p, q)-

synchronously rational. However, the latter implies that R is also (q, p)-synchronously

rational. Then, according to Theorem 1, either p = q or R is recognisable. In either

case, R is regular. Therefore a decision procedure for (ii) would yield an algorithm for

regularity, which is undecidable. ut

3 Bijective semi-synchronous transductions

The objects of study in this section are translations.

Definition 2 (Translations) A translation is a bijection t : D → C between regular

sets of words D ⊆ Σ∗ and C ⊆ Γ ∗. A translation t preserves regularity (non-regularity)

if the image of every regular relation under t (respectively, under t−1) is again regular.

Finally, t is weakly regular if it preserves both regularity and non-regularity.

Although every bijective rational transduction qualifies as a translation, in fact one

preserving regularity of sets, it is not necessarily regularity preserving.

Example 2

– The homomorphism w 7→ w with domain {a, b}∗ and a = b and b = a is a transla-

tion that is regularity preserving and is its own inverse.

– The homomorphism dupl mapping a 7→ aa for every a ∈ Σ is a (1, 2)-synchronous

transduction, thus, by Proposition 2, it is weakly regular.

– Consider the mapping bin : an 7→ [n]2, where [n]2 is the binary numeral representing

n in the least-significant digit first manner. It is well known that such binary

representation [R]2 = {([n1]2, . . . , [nr]2) | (n1, . . . , nr) ∈ R} of every Presburger-

definable relation R ⊆ Nr is synchronised rational [6], and that regularity over

unary numerals implies Presburger definability2. It follows that bin is a regularity

preserving translation. However, the pre-image bin−1({[2n]2 | n ∈ N}) is clearly

not a regular subset of a∗.

1 I thank the anonymous referee suggesting a similar reduction.
2 The following stronger statement is a classical one (see e.g. [13]). The unary representation

of a relation R ⊆ Nr is synchronised rational iff R is first-order definable in the structure
(N, 0, <, +1, {≡ mod (m)}m>1), in which case it is even quantifier-free definable.
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– The homomorphism τ mapping a 7→ aa and b 7→ b is a rational translation that is

not regularity preserving, e.g. τ({(an, bn) | n ∈ N}) is not regular.

– rev : w 7→ wrev mapping each word to its reversal is a translation which preserves

regularity of sets, i.e. unary relations, in both directions but the image of the prefix

relation under reversal is not a regular relation as the reader can check.

– The injection w 7→ ww with domain {a, b}∗ is not a translation because its range

is not regular.

Regular translations, whose graphs are synchronised rational relations, are easily

seen to be weakly regular. More generally, like dupl above, all semi-synchronous trans-

ductions are weakly regular as we have already established in Proposition 2.

Corollary 2 Every semi-synchronously rational translation is weakly regular.

As our main result, in Theorem 2 we prove the converse of this statement. The proof

relies on a careful analysis of growth rates and on the regularity of (pre)images of certain

distinguished relations. We divide the proof into several steps with the aid of equivalent

transformations. By this we mean the following. Given a translation f : D → C and

a weakly regular translation T : C → C′ we ”replace” f with g = T ◦ f : D → C′.
We will say that two translations f : D → C and g : D → C′ over the same domain

are equivalent (f ∼ g) if one can be obtained from the other by a transformation as

above, that is, if g ◦f−1 is weakly regular. As far as preserving regularity of relations is

concerned this is a perfectly legitimate transformation, because for each relation R over

D, f(R) is regular if and only if g(R) is regular; and, equivalently, for each relation

R over C′, f−1(T−1(R)) is regular if and only if g−1(R) is regular. In particular,

whenever f ∼ g then f preserves regularity, or non-regularity, or is weakly regular if

and only if g does/is, respectively.

3.1 Growth

To each translation f : D → C we associate its growth function Gf : N→ N defined as

Gf (n) = max ({|f(u)| : u ∈ D, |u| ≤ n} ∪ {0}) for each n .

We define the following growth-related properties of a translation f :

– f is length-preserving if |f(x)| = |x| for every word x;

– f is length-monotonic if |x| ≤ |y| implies |f(x)| ≤ |f(y)| for every x and y;

– f has bounded delay3 if there exists a constant δ

such that |x|+ δ < |y| implies |f(x)| < |f(y)| for every x and y.

We recall some basic combinatorial facts concerning regular sets and relations.

The first one is a straightforward consequence of the well-known “pumping lemma” of

automata theory. A relation R of arity n + m is locally finite if for every (x1, . . . , xn)

there are only finitely many (y1, . . . , ym) such that R(x,y) holds.

Fact 3 ([8]) Let R ⊆ (Σ∗)n+m be a regular and locally finite relation. Then there is a

constant k such that maxj |yj | ≤ maxi |xi|+k holds for every (x,y) ∈ R. In particular,

if f : (Σ∗)n → Σ∗ is a regular function, then there is a constant k such that for every

x in its domain we have |f(x)| ≤ maxi |xi|+ k.

3 Different from [9]’s notion of rational transducers having bounded delay.
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For a regular set D ⊆ Σ∗ let D=n = D ∩Σn and D≤n = D ∩Σ≤n denote the set

of members of D of length precisely n and at most n, respectively. Further let Pref(D)

be the (regular) set of prefixes of words in D.

Fact 4 ([10, Lemma 3.12]) Let D ⊆ Σ∗ be a regular set. Then

(i) |Pref(D)=n| = O(|D≤n|) and

(ii) for every fixed C ∈ N : |D≤(n+C)| = O(|D≤n|)

The density function d of a regular language D maps each natural n to the number

|D≤n| of elements of D of length at most n. Concerning the density functions of regular

languages we recall the following facts.

Fact 5 ([18,19]) Let D be an infinite regular language and d(n) its density function.

Then either

(i) D is the finite union of languages Di = ui,1v
∗
i,1ui,2 . . . ui,ni

v∗i,ni
ui,ni+1 and d(n)

is a polynomial of degree maxi ni, or

(ii) there are α > 1 and r ∈ N and constants 0 < c1 ≤ c2, such that c1 n
rαn ≤ d(n) ≤

c2 n
rαn for all sufficiently large n.

Proof

The first assertion is a well-known characterisation of regular languages with polyno-

mial density, cf. e.g. [19]. We outline a proof of (ii) based on classical results of [18].

Consider the sequence ( |Pref(D)=n| )n. Because Pref(D) is prefix closed, i.e. all states

of its minimal DFA are accepting, the sequence ( |Pref(D)=n| )n is a D0L sequence,

and, as such, it has a definite asymptotic behaviour. Indeed, for every D0L sequence s

not ultimately zero there are α ≥ 1 and r ∈ N, such that s has growth order nrαn, i.e.

s(n) = Θ(nrαn). [18, Section III.7.]. In our case now α > 1. Moreover, the sequence`
|Pref(D)≤n|

´
n

, which is the summation of the former, is itself a D0L sequence of the

same growth order, because nrαn ≤
Pn
i=0 i

rαi ≤ nr
Pn
i=0 α

i < α
α−1n

rαn. To con-

clude we note that by Fact 4 there is a constant C > 0 such that C·|Pref(D)=n| ≤ |D≤n|
and obviously |D≤n| ≤ |Pref(D)≤n|. Therefore also d(n) = Θ(nrαn) as claimed. ut

The relation L = {(x, y) | |y| ≤ |x|} will play a central role in our analysis. We

leave the domain of L intentionally unspecified and rather overload the symbol L to

allow it to refer to {(x, y) ∈ D2 | |y| ≤ |x|} for any regular language D relevant in the

particular context.

Our first lemma establishes a connection between regularity of the pre-image of L
under a translation and its property of having bounded delay.

Lemma 1 Let f : D → C be a translation such that f−1(L) is regular. Then f has

bounded delay.

Proof By assumption f−1(L) is regular and it is locally finite because L = {(u, v) ∈
C2 | |v| ≤ |u|} is. Hence, by Fact 3, there is a constant δ such that |f−1(v)| ≤
|f−1(u)| + δ whenever |v| ≤ |u|. By negating both sides and substituting u = f(x)

and v = f(y) we arrive at the equivalent statement that |y| > |x| + δ implies that

|f(y)| > |f(x)|, which is to say that f has bounded delay with bound δ. ut

The following lemma gives a handy example of an equivalent transformation that

will also be the first step in our construction.
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Lemma 2 To every translation f : D → C for which f(L) is regular one can construct

an equivalent translation g = π ◦ f , such that π is regular, Gg = Gf , g is length-

monotonic, moreover g has bounded delay iff f has bounded delay.

Proof The relation L = {(x, y) ∈ D2 | |y| ≤ |x|} is locally finite and regular, so is its

image f(L). Therefore, by Fact 3, there is a constant K such that |y| ≤ |x| → |f(y)| ≤
|f(x)| + K for every x, y ∈ D. By the choice of K, we have Gf (|x|) ≤ |f(x)| + K for

all x ∈ D. We may thus partition D into subsets

Ds = {x ∈ D | Gf (|x|)− |f(x)| = s} with 0 ≤ s ≤ K .

We claim that the sets Cs = f(Ds) constitute a regular partitioning of C. Indeed,

consider the sets

Fs = {u ∈ C | ∀v ∈ C : (u, v) ∈ f(L)→ |v| ≤ |u|+ s}

for all 0 ≤ s ≤ K. These are regular, being first-order definable from f(L), which is

by assumption regular, and from the relation |v| ≤ |u| + s, which is trivially regular

for any fixed s. Then C0 = F0 and Cs+1 = Fs+1 \ Fs for all 0 ≤ s < K, therefore Cs
is regular for each s as claimed. This observation allows us to define g by padding the

f -image of each word according to its partition:

g(x) = f(x)@Gf (|x|)−|f(x)| (∀x ∈ D)

Thus, g(D) = C′ =
Sk
s=1 Cs ·@

s and g = π◦f , where π is the padding function defined

as π = {(v, w) ∈ C × C′ |
W
s≤K(v ∈ Cs ∧ w = v@s)}. Given automata recognising

each Cs it is again easy to construct a synchronised rational transducer recognising

π, which is thus (weakly) regular. This means that g is equivalent to f as required.

Moreover, g is length-monotonic by construction, because |g(x)| = Gf (|x|) = Gg(|x|)
holds for every word x, and the growth function Gf is by definition always monotonic.

To check our last claim assume first that f has bounded delay, say bounded by

δ. Thus, |x| + δ < |y| =⇒ |f(x)| < |f(y)| for every x and y, and therefore |g(x)| =

Gf (|x|) < |f(y)| ≤ |g(y)| whenever |x|+ δ < |y|, i.e. g has bounded delay. Conversely,

assume that g has bounded delay, say bounded by ∆. We shall assume that D is infinite,

otherwise the claims of this lemma are rendered trivial. We may then choose M such

that for every n there is a word z ∈ D of length n ≤ |z| < n + M . Let x, y ∈ D be

arbitrary words such that |x| + K(∆ + M) < |y|. Then, by the choice of M we have

for each i ≤ K some word xi ∈ D with x0 = x and |xi|+∆ < |xi+1| ≤ |xi|+ (∆+M)

for all i < K and |xK | < |y|. Thus |g(x)| < |g(x1)| < . . . < |g(xK)| ≤ |g(y)|, so

|g(x)| + K < |g(y)|, in other terms |Gf (x)| + K < |Gf (y)|. Therefore |f(x)| + K ≤
|Gf (x)|+K < |Gf (y)| ≤ |f(y)|+K, i.e. |f(x)| < |f(y)|. Since the choice of x and y was

arbitrary, this proves that f has bounded delay, with δ = K(∆+M) as a bound. ut

The next observation further highlights the significance of preserving regularity of

L and of the bounded delay property. The following crucial fact will be key to our proof

of the main theorem.

Lemma 3 Let f : D → C be a translation of bounded delay for which f(L) is regular.

Then the infinite sequence of increments ∂Gf = 〈Gf (1) − Gf (0), Gf (2) − Gf (1), . . .〉
of the growth function of f is ultimately periodic.
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Proof Relying on Lemma 2 we assume henceforth that f is length-monotonic. We know

that f has bounded delay, say with bound δ. Then Gf is a non-decreasing sequence of

naturals in which each number can occur at most δ times.

Let ≤llex denote the length-lexicographical ordering, and let E = {(x, y) ∈ D2 |
|x| = |y|}. Both ≤llex and f(E) are regular relations. The latter so, because (x, y) ∈
E ↔ (x, y), (y, x) ∈ L and f(L) is regular by assumption. We define the language

L = {f(x) | x ∈ D, ∀y ∈ D |x| = |y| → f(x) ≤llex f(y)}
= {u ∈ C | ∀v ∈ C (u, v) ∈ f(E)→ u ≤llex v}

which is thus also regular. Let l0 < l1 < . . . be the sequence of all those naturals l for

which there is a word in D of length l. Then L = {u0, u1, . . .}, where ui denotes, for

each i ∈ N, the length-lexicographically least element of f(D=li). Because f is length-

monotonic, we have |ui| = Gf (li) and |ui| ≤ |ui+1| for each i ∈ N. Furthermore, by

the choice of δ, also |ui| < |ui+δ| holds for each i ∈ N. In other words, there are at

most δ many words in L of each length. One says that L is δ-thin [16]. We can thus

write L as a disjoint union of the regular languages

Lk = {u ∈ L | ∃=kv ∈ L : |u| = |v|} (1 ≤ k ≤ δ)

Let ψ : C → a∗ be the homomorphism sending every letter to a. It is a length-

preserving projection mapping L to the set of unary numerals corresponding to the

pruned sequence obtained from Gf by omitting the repetitions, i.e. ψ(L) is the unary

representation of Gf (N). Similarly, for each 1 ≤ k ≤ δ, ψ(Lk) is the unary representa-

tion of the set of those values n that are repeated exactly k times in Gf , i.e. such that

|G−1
f (n)| = k.

As homomorphic images of regular languages these projections are regular unary

languages. As such, each ψ(Lk) is the unary representation of a semi-linear set of

naturals Nk = {nk,0 < nk,1 < nk,2 < . . .}, which is to say that the sequences (nk,i+1−
nk,i)i are ultimately periodic. In particular they are bounded, say by B. One way to

conclude is by building a finite sequential transducer T which on input aω outputs ∂Gf .

We can construct T from a direct product of automata recognising ψ(L1), . . . , ψ(Lδ)

and a counter counting modulo B+1. The counter value is initially 0 and is incremented

upon reading each a while the component automata are simulated. Whenever one of

the automata enters an accepting state, the counter value is output and reset to 0. If

it was the k + 1-st automaton, then additionally k zeros are appended to the output.

By definition, ∂Gf is the output of the infinite run on input aω. Equivalently, ∂Gf is

the homomorphic image of the ultimately periodic sequence of states along this run.

The claim follows. ut

Corollary 3 If f is a translation such that both f(L) and f−1(L) are regular then

∂Gf is ultimately periodic.

In our last lemma of this subsection we show how the fact that the growth function

of a translation increases in periodic increments can be exploited to transform it into

an equivalent length-preserving translation.

Lemma 4 Let g : D → C be a length-monotonic regularity-preserving translation

of bounded delay. Then one can construct an equivalent length-preserving translation

h = τ ◦ g with τ a semi-synchronous transduction.
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Proof Under the assumptions on g Lemma 3 shows that ∂Gg is ultimately periodic. For

simplicity we assume wlog. that Gg(0) = 0, i.e. that if ε ∈ D then g(ε) = ε. (This can

be ensured by modifying g, when needed, on a finite number of words, which always

yields an equivalent translation with the same asymptotic properties.) This allows us

to construct a length-preserving translation h equivalent to g by subdividing words in

the image of g into blocks according to ∂Gg.

To this end let c = maxn∂Gg[n] and consider a new alphabet Θ = Γ≤c = {w ∈
Γ ∗ : |w| ≤ c}. Let β : Θ∗ → Γ ∗ be the homomorphism mapping each element of Θ to

the corresponding word over Γ . Consider then some word x ∈ D of length n and its

image v = g(x) ∈ C. Since g is length-monotonic |v| = Gg(|x|) = Gg(n) and we can

factorise v as v1v2 · · · vn where |vi| = ∂Gg[i] for each i ≤ n.

We define the mapping τ : C → Θ∗ by setting for each v ∈ C with factorisation

v = v1v2 . . . vn as above τ(v) = v1 · v2 · . . . · vn when considered as a word of length n

over Θ. In particular, β ◦ τ is the identity map on C. Finally, we set h = τ ◦ g. Thus,

h is by definition length-preserving.

It remains to show that τ is a semi-synchronously rational transduction. Lemma 3

tells us that the sequence of increments, ∂Gg, is ultimately periodic, say from threshold

N and with period p. Let q = Gg(N+p)−Gg(N) be the total length of any p consecutive

blocks (increments) with sufficiently high indices. This means that after reading the

first Gg(N) input symbols and the first N output symbols a transducer accepting τ

can proceed by reading blocks of q input symbols over Γ and p output symbols over Θ

in each step, which implies that τ is in fact a (q, p)-synchronous transductions. ut

3.2 Main result

In this subsection we prove that every weakly regular translation is a semi-synchronous

transduction, thus establishing the converse of Corollary 2. As a first step toward our

main theorem let us consider the special case of length-preserving translations. The

next result shows that in this case the condition of weak regularity can be dramatically

weakened to preserving regularity of only binary relations in just one direction.

Proposition 4 Let f : D → C be a length-preserving translation. If f preserves regu-

larity of all binary relations on D then (the graph of) f is regular.4

Proof Let Σ be the alphabet of D. For each z ∈ Σ∗ we define the regular relation

Sz = (Σ × Σ)∗({ε} × zΣ∗) ∩ D2. By assumption, their images under f are regular

relations over C. In fact, since only the length of the first component plays a role in

these relations, and it is preserved by f , the following “variants” over D × C are also

regular.

Rz = {(y, f(x)) ∈ D × C | ∃y′ ∈ Σ∗ |y′| = |y| ∧ y′z �prefix x} (z ∈ Σ∗)

Indeed, an automaton for Rz needs only to guess v ∈ C of length |v| = |y| and check

that (v, f(x)) ∈ f(Sz).

Since the claim is trivially true if D is finite, we may assume that D is infinite. Then

there is a M such that for every n ∈ N there is a word y ∈ D of length n ≤ |y| < n+M .

Observe that thus every x ∈ D is completely determined by the set of pairs (|y|, z)

4 Cf. [8, Corollary 6.6] (also [9]) stating that length-preserving rational transductions are
synchronised rational.
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with |z| ≤M and such that Sz(y, x) holds. We can therefore describe f using relations

Rz with |z| ≤M as follows.

graph(f) = {(x, u) ∈ D × C | |x| = |u| ∧ ∀y ∈ D
^

z∈Σ≤M

Sz(y, x)→ Rz(y, u)}

This shows that the graph of f is indeed regular, i.e. that f is a synchronised rational

transduction. ut

In the general case the lemmata of the previous subsection allow us to successively

weaken the condition of weak regularity, each in turn equivalent to semi-synchronicity.

Theorem 2 For every translation f : D → C the following are equivalent:

1) f is weakly regular;

2) f is regularity preserving and f−1(L) is regular;

3) f(R) is regular for every binary regular relation R and f has bounded delay;

4) f can be decomposed as f = ρ ◦ h, where h is a length-preserving synchronised

rational translation, f ∼ h and ρ is a semi-synchronously rational transduction

witnessing this equivalence;

5) f is a semi-synchronously rational transduction.

Proof Assuming 4), f is the composition of semi-synchronously rational transductions.

Therefore, as noted on page 3, f is itself semi-synchronous. This proves 4) =⇒ 5). The

implication 5) =⇒ 1) is just a restatement of Corollary 2 established in Proposition 2.

By definition we have that 1) =⇒ 2) and by Lemma 1 also 2) =⇒ 3) holds.

It remains to prove 3) =⇒ 4). We achieve this by constructing in two steps of equiv-

alent transformations a length-preserving translation h equivalent to f . It follows then

that, like f , h preserves the regularity of all binary relations. Hence by Proposition 4

it is synchronised rational as required.

As a first step we apply Lemma 2 to transform f into the equivalent length-

monotonic translation g = π ◦ f . In Lemma 2 we have pointed out that π is indeed

synchronised rational and also that g has bounded delay, because f does. The next

transformation step producing a length-preserving translation h = τ ◦ g equivalent to

g and with τ a semi-synchronously rational translation is facilitated by Lemma 4.

Putting the pieces together we have the following chain of equivalent transforma-

tions: f ∼ g = π ◦ f ∼ h = τ ◦ g amounting to the decomposition of f as

f = π−1 ◦ τ−1 ◦ h

where π applies the padding, τ the cutting of words into blocks, and where h is length-

preserving, hence, according to Proposition 4, also regular. Setting ρ = π−1 ◦ τ−1 this

concludes the proof of 3) =⇒ 4) thus closing the loop of implications and completing

the proof of Theorem 2.

As a final note, observe that both π−1 of Lemma 2 and τ−1 = β of Lemma 4 are

homomorphisms, hence ρ is a homomorphism as well. ut

We have seen how the fact that certain selected relations are mapped onto regular

relations by a translation, and/or its inverse, ensures that the translation is weakly

regular. We close our discussion with an observation on how the growth rate of the

density of the domain of the translation can help to further reduce these requirements.
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Theorem 3 Let D be an infinite regular language.

(i) If D is of exponential density then every translation f with domain D that maps

every binary regular relation R over D to a regular relation is in fact weakly regular.

(ii) If, on the other hand, D has polynomial density then there is a translation f with

domain D that is regularity preserving but not weakly regular. In fact, there are

infinitely many pair-wise inequivalent regularity-preserving translations: fp : D →
Cp, one for each prime p.

Before giving the proof we state an important special case of item (i).

Corollary 4 Consider a non-unary alphabet Σ and a translation f : Σ∗ → C. If f

preserves regularity of all binary relations over Σ∗ then f is weakly regular, and hence

semi-synchronous.

Proof of Theorem 3

(i) In light of Lemma 2 we may assume that f is length-monotonic and according to

Theorem 2 item 3) we only need to show that f has bounded delay.

Consider the regular relation S = {(x, y) ∈ D2 | |x| + 1 ≥ |y|}. By assumption

f(S) is regular, and because it is locally finite we find a constant K such that |f(y)| ≤
|f(x)|+K for all x and y with |x|+ 1 ≥ |y|. Thus, Gf (n) ≤ Gf (n−1) +K for every n.

Let d be the density function of D mapping each n to d(n) = |D≤n|. By Fact 5 there

is an α > 1, r ∈ N and c1, c2 > 0 and N ∈ N such that c1 n
rαn ≤ d(n) ≤ c2 n

rαn for

all n ≥ N . Now suppose that for some n > N and t > 0 we find the following situation.

Gf (n− 1) < Gf (n) = Gf (n+ 1) = . . . = Gf (n+ t− 1) < Gf (n+ t)

By the choice of K we have that C≤Gf (n) ⊆ C≤Gf (n−1)+K . From Fact 4 we know

that |C≤n+K | ∈ O(|C≤n|), thus, there is a constant B independent of n (and certainly

B ≥ 1) such that |C≤Gf (n)| ≤ |C≤Gf (n−1)+K | ≤ B · |C≤Gf (n−1)|. Because f is

length-monotonic we have |C≤Gf (n−1)| = d(n− 1) and |C≤Gf (n)| = |C≤Gf (n+t−1)| =
d(n + t − 1) since these sets contain precisely the images of words of length at most

n− 1 and n+ t− 1, respectively. Our estimates on d(n) yield that

c1
c2
αt ≤ c1 (n+ t)r

c2 nr
αt ≤ d(n+ t− 1)

d(n− 1)
≤ B

therefore t ≤ logα(B c2
c1

). It follows that f has bounded delay, with bound equal to the

maximum of logα(B c2
c1

) and the largest t such that Gf (n) = Gf (n + t − 1) for some

n ≤ N .

(ii) As noted in Fact 5 regular sets of polynomial growth are characterised as those be-

ing a finite (wlog. disjoint) union of the formD =
SN
i=1 ui,1v

∗
i,1ui,2 . . . ui,ni

v∗i,ni
ui,ni+1.

Let n = maxi≤Nni + 1. The idea is to first represent each

w = ui,1v
r1
i,1 · ui,2v

r2
i,2 · · · · · ui,ni

v
rni
i,ni
· ui,ni+1

by the (n+ 1)-tuple of naturals

t(w) =
“
i, |ui,1vr1i,1|, |ui,1v

r1
i,1ui,2v

r2
i,2|, . . . , |ui,1v

r1
i,1 . . . ui,ni

v
rni
i,ni
|, |w|, . . . , |w|

”
.
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This is an injective mapping t : D → Nn+1. In order make our case we further define

a kind of unary encoding of each tuple t(w) = (i,m1,m2, . . . ,mn) as

h(w) = i al11 a
l2
2 · · · a

lni
ni a

lni+1

ni+1

where l1 = m1 and lj+1 = mj+1 − mj for each j ≤ ni. That is, lj = |ui,jv
rj

i,j | =

|ui,j |+ rj |vi,j | for each j ≤ ni and lni+1 = |ui,ni+1|.

Claim The mapping h : D →
SN
i=1 ia

∗
1a
∗
2 · · · a∗ni

is a synchronised rational translation.

Proof Clearly, h is injective, and it is easily seen to be computable by a transducer,

which, after reading and storing the initial symbol i of the second tape, proceeds

in a letter-by-letter fashion. The transducer simply matches, for j = 1, . . . , ni + 1,

each maximal factor a
lj
j of the second tape with a factor ui,jv

rj

i,j in the corresponding

position and of the same length on the first tape. a

Claim The function t : D → Nn+1 maps every regular R ⊆ Dr to a Presburger-

definable subset of N(n+1)r.

Proof Notice that if one identifies each letter aj with �j−11n−j ∈ {1,�}n then for

each word w ∈ D with t(w) = (i,m1, . . . ,mn) ∈ Nn+1 the sequence al11 a
l2
2 · · · a

lni+1

ni+1 of

h(w) without the initial i corresponds exactly to the letter-by-letter convolution of the

unary numerals 1m1 , . . . , 1mn representing the tuple t(w) without the i. This means

that h(R) is essentially identical, modulo the encoding of i, to the unary representation

[t(R)]1 of t(R) for every relation R over D. From the previous claim we know that R is

regular iff h(R) is regular, which is, by the above, equivalent to [t(R)]1 being regular,

which in turn implies that t(R) is Presburger definable (cf. footnote 2). a

Let [n]p denote the p-ary representation of n in least-significant digit first manner.

For each prime p we define fp to map each word w ∈ D with t(w) = (i,m1,m2, . . . ,mn)

to the letter-by-letter convolution

fp(w) = �1 ([i]p, [m1]p, [m2]p, . . . , [mn]p) .

Thus, the image fp(R) of a relation R ⊆ Dr is essentially identical with the natural

base-p representation [t(R)]p of t(R) ⊆ Nr(n+1). According to the previous claim, t(R)

is Presburger definable whenever R is regular. As already mentioned in connection with

Example 2, all Presburger-definable relations are regularly represented in the binary,

or, for that matter, in any natural base-p numeration system [6]. This means that each

fp is indeed a regularity-preserving translation with domain D.

To conclude we observe that by the Cobham-Semenov Theorem (cf. e.g. [6,5,12])

the fp’s are pair-wise inequivalent. Alternatively, this can be established using Theo-

rem 2 together with Theorem 1 showing that if D is infinite and p and q are distinct

primes then the translation fq ◦ f−1
p is not semi-synchronously rational. ut
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16. G. Păun and A. Salomaa. Thin and slender languages. Discrete Applied Mathematics,

61(3):257–270, 1995.
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