Projection Tutorial

Tom Wright
University of Oxford

December 6, 2000

This tutorial! is designed to take you through an example where the the time
needed to create a high-resolution publication quality plot of the pseudospec-
tra of a matrix is significantly reduced by projection onto a carefully chosen
invariant subspace.

You must have the Pseudospectra GUI installed on your machine to be able
to work through this tutorial. You can download it from
http://www.comlab.ox.ac.uk/oucl/work/tom.wright/psgui/download/.

The tutorial is organised into five parts:

Step 1: Set up the data

Step 2: Select the portion of the complex plane of interest

Step 3: Begin to introduce projection

Step 4: Reduce the Safety value still further

Step 5: Compute the pseudospectra on a fine grid of size 200 by 200

You can download the code used to generate the matrices used in this tuto-
rial from http://www.comlab.ox.ac.uk/oucl/work/tom.wright/psgui
/proj_tutorial/lnt comp psa mtxs.m. This is taken from Trefethen’s paper,
Computation of Pseudospectra (Acta Numerica, 1999), which describes projec-
tion in greater detail.

! Also available electronically at: http://www.comlab.ox.ac.uk/oucl/work
/tom.wright/psgui/proj_tutorial

e Step 1: Set up the data.

Generate the matrix B by downloading the code and running it with
N = 200:

B = 1nt_comp_psa mtxs(200) ;
Compute the pseudospectra using the default settings:
psa(B)

You should end up with something like the following image, which takes
about 1 minute to generate on my Sun Ultra 5 workstation.

Note the large magnitudes of the = and y axes. Thes axes are chosen
automatically by the Pseudospectra GUI, and are this big because of the
outlying eigenvalue near —80, 000.

Momebad |

e Step 2: Select the portion of the complex plane of interest.

This plot shows the pseudospectra in a region of the complex plane which
contains the entire spectrum of the matrix B. Our interest, however, is
in the rightmost eigenvalues, the ones with largest real part. To focus on
these, we change the axis limits (using the text boxes towards the bottom
left of the GUI) so that the real axis ranges from —100 to 50 and the
imaginary axis from 0 to 150.

After changing these limits, click on ‘Go!’ to recompute the pseudospectra
on this new domain. If you get a message saying that there are no contours
to plot in the range specified, click on ‘Smart’ levels to change the levels
plotted. You should end up with something like the following image, which
my Sun Ultra 5 takes about 30 seconds to compute:

Filz Extras Winclow
| Pseudospectra GUI: left button to zoom in, right button to zoom out |
150 —0
(— - { -
—= | =
- Start Agai |
1005 art Acain
— -
5 Eig. Cohel Mo, |
— Frintable Plot |
—] -7
s0F Tesw Patrix |
— -5
— -5 Gluit |
() — 10
Projection {0..Inf):
0 frf 11 ;
100 50 o 50 Safety: | inf
Figure Axes: Mesh: Contour Levels:
Grid Size: I
= Scale Equal | riti size 15 ‘Smart” levels |
Wmax: [150 s log10argesty: | o
smin: [~ -100 MK | &0 W Colour | log 1 0¢smallest): | i
W min: | a W Thick | Step size: | 1

e Step 3: Begin to introduce projection.

The previous image is perfectly adequate for getting a rough idea of the
behaviour of the pseudospectra near the imaginary axis, but it would be
better to have a higher quality plot for inclusion in a publication or talk.
The problem is that although this plot took only a few seconds to generate,
it is only computed on a coarse 15 by 15 grid (with 225 gridpoints in total).
To move to a grid of 200 by 200 points to give a high quality plot would
entail a wait of nearly an hour and a half on my Sun Ultra 5. This may
be feasible for this reasonably small matrix, but we can do better.

The key is to project our matrix of dimension 200 onto a subspace spanned
by the invariant subspace corresponding to the eigenvalues near the region
of the complex plane we are interested in. The projected matrix will
hopefully have dimension much less than 200, and so the computation
will be faster.

The following figures indicate how our projection algorithm operates. The
green square represents the area of the complex plane visible in the GUI
(the area our grid is defined over), while the red square represents the
eigenvalues whose eigenvectors we project onto. In the left figure, the
projection level (‘Safety’) is set to 2, while in the right one the projection
level is set to 1. The red rectangle is defined as the region which is (1 + 2b)
times as high and (1 + 2b) times as wide as the rectangle visible in the
GUI, where b is the Safety value.

ann ; ;] 300k

. : : : .
ELL T S : -9 P00zt
P

iy
EF YY)
e,

100k -

00 e 00 e

a0 e CBO0 oo

a0 g g i A0

—400 -200 a 200 400 - =400 -200 a 200 400

When you click ‘Go!’, the matrix is first projected onto the space spanned
by eigenvectors whose eigenvalues are within the red square. This is a non-
trivial operation, but the benefits will far outweigh this extra cost if we
are computing on a fine grid. The pseudospectra of this smaller, projected
matrix are then computed. As long as the effect of the eigenvalues we have
left out of our projection is small, the plot of the pseudospectra will look
essentially identical, and importantly, the computation will be faster.

First, try reducing the ‘Safety’ value to 2 and recomputing the pseudospec-
tra. The plot you get should look exactly the same as the one obtained
before (with infinite safety i.e. no projection). On the coarse grid used
here, the computation time is much the same (we have to take account
of the time taken to project the matrix), but we will see real differences
when we move to the fine grid. This takes about 30 seconds on my Sun
Ultra 5 workstation.

Since we saw no difference for Safety=2, now reduce Safety to 1 and re-
compute again. Once more, there is no change to the pseudospectra. Your
Pseudospectra GUI should now look like this:

i

IIJ

e Step 4: Reduce the Safety value still further.

As there was once again no difference, try reducing Safety again, this time
to 0.5. If you look carefully at this plot, you can see that the pseudospectra
are not the same as the previous plots at the left edge of the axes. If you
reduce Safety still further, to 0.25, you should get the plot below, which
again takes about 30 seconds to compute on my computer. The important
thing to note here is that the pseudospectra of the projected matrix may
be misleading when the invariant subspace that is projected upon makes
a small angle with an eigenvector that is omitted from the projection; you
must be careful not to project too far.

e Step 5: Compute the pseudospectra on a fine grid of size 200 by 200.

First of all, set the value of Safety back to 1. Now set the number of
gridpoints to 200, and hit the ‘Go!” button. The computation takes
me about 25 minutes, less than a third of the predicted time without
projection. The final figure is shown below, and although the lines appear
jagged on the screen, they will be smooth when printed out as a postscript
file.

